Pytorch教程内置模型源码实现
作者:xz1308579340 发布时间:2022-09-04 12:58:50
翻译自
https://pytorch.org/docs/stable/torchvision/models.html
主要讲解了torchvision.models的使用
torchvision.models
torchvision.models中包含了如下模型
AlexNet
VGG
ResNet
SqueezeNet
DenseNet
Inception v3
随机初始化模型
import torchvision.models as models
resnet18 = models.resnet18()
alexnet = models.alexnet()
vgg16 = models.vgg16()
squeezenet = models.squeezenet1_0()
desnet = models.densenet161()
inception =models.inception_v3()
使用预训练好的参数
pytorch提供了预训练的模型,使用torch.utils.model_zoo ,通过让参数pretrained =True来构建训练好的模型
方法如下
resnet18 = models.resnet18(pretrained=True)
alexnet = models.alexnet(pretrained=True)
squeezenet = models.squeezenet1_0(pretrained=True)
vgg16 = models.vgg16(pretrained=True)
densenet = models.densenet161(pretrained=True)
inception = models.inception_v3(pretrained=True)
实例化一个预训练好的模型会自动下载权重到缓存目录,这个权重存储路径可以通过环境变量TORCH_MODEL_ZOO来指定,详细的参考torch.utils.model_zoo.load_url() 这个函数
有的模型试验了不同的训练和评估,例如batch normalization。使用model.train()和model.eval()来转换,查看train() or eval() 来了解更多细节
所有的预训练网络希望使用相同的方式进行归一化,例如图片是mini-batch形式的3通道RGB图片(3HW),H和W最少是244,。 图像必须加载到[0,1]范围内,然后使用均值=[0.485,0.456,0.406]和std =[0.229, 0.224, 0.225]进行归一化。
您可以使用以下转换来normalzie:
normalize = trainform.Normalize9mean = [0.485,0.456,0.406],std = [0.229,0.224,0.225])
在这里我们可以找到一个在Imagenet上的这样的例子
https://github.com/pytorch/examples/blob/42e5b996718797e45c46a25c55b031e6768f8440/imagenet/main.py#L89-L101
目前这些模型的效果如下
下面是模型源码的具体实现,具体实现大家可以阅读源码
###ALEXNET
torchvision.models.alexnet(pretrained=False, **kwargs)[SOURCE]
AlexNet model architecture from the “One weird trick…” paper.
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
###VGG
torchvision.models.vgg11(pretrained=False, **kwargs)[SOURCE]
VGG 11-layer model (configuration “A”)
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg11_bn(pretrained=False, **kwargs)[SOURCE]
VGG 11-layer model (configuration “A”) with batch normalization
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg13(pretrained=False, **kwargs)[SOURCE]
VGG 13-layer model (configuration “B”)
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg13_bn(pretrained=False, **kwargs)[SOURCE]
VGG 13-layer model (configuration “B”) with batch normalization
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg16(pretrained=False, **kwargs)[SOURCE]
VGG 16-layer model (configuration “D”)
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg16_bn(pretrained=False, **kwargs)[SOURCE]
VGG 16-layer model (configuration “D”) with batch normalization
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg19(pretrained=False, **kwargs)[SOURCE]
VGG 19-layer model (configuration “E”)
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg19_bn(pretrained=False, **kwargs)[SOURCE]
VGG 19-layer model (configuration ‘E') with batch normalization
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
RESNET
torchvision.models.resnet18(pretrained=False, **kwargs)[SOURCE]
Constructs a ResNet-18 model.
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.resnet34(pretrained=False, **kwargs)[SOURCE]
Constructs a ResNet-34 model.
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.resnet50(pretrained=False, **kwargs)[SOURCE]
Constructs a ResNet-50 model.
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.resnet101(pretrained=False, **kwargs)[SOURCE]
Constructs a ResNet-101 model.
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.resnet152(pretrained=False, **kwargs)[SOURCE]
Constructs a ResNet-152 model.
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
SQUEEZENET
torchvision.models.squeezenet1_0(pretrained=False, **kwargs)[SOURCE]
SqueezeNet model architecture from the “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size” paper.
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.squeezenet1_1(pretrained=False, **kwargs)[SOURCE]
SqueezeNet 1.1 model from the official SqueezeNet repo. SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters than SqueezeNet 1.0, without sacrificing accuracy.
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
DENSENET
torchvision.models.densenet121(pretrained=False, **kwargs)[SOURCE]
Densenet-121 model from “Densely Connected Convolutional Networks”
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.densenet169(pretrained=False, **kwargs)[SOURCE]
Densenet-169 model from “Densely Connected Convolutional Networks”
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.densenet161(pretrained=False, **kwargs)[SOURCE]
Densenet-161 model from “Densely Connected Convolutional Networks”
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.densenet201(pretrained=False, **kwargs)[SOURCE]
Densenet-201 model from “Densely Connected Convolutional Networks”
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
INCEPTION V3
torchvision.models.inception_v3(pretrained=False, **kwargs)[SOURCE]
Inception v3 model architecture from “Rethinking the Inception Architecture for Computer Vision”.
Parameters:pretrained (bool) – If True, returns a model pre-trained on ImageNet
来源:https://blog.csdn.net/xz1308579340/article/details/85336102
猜你喜欢
- 最近分别用vue和Android实现了一个券码复制功能,长按券码会在上方弹出一个拷贝的icon提示,点击icon将券码内容复制到剪贴板。现将
- 前端时间智能信息处理实训,我选择的课题为身份证号码识别,对中华人民共和国公民身份证进行识别,提取并识别其中的身份证号码,将身份证号码识别为字
- 本文实例讲述了Python基于matplotlib实现绘制三维图形功能。分享给大家供大家参考,具体如下:代码一:# coding=utf-8
- 一、需求分析最近同事用网上提供扫描软件进行扫描识别文字,每天上线只能够做两次扫描,请求我研发一个小工具帮助解决识别图片的中文字。二、方案选择
- 一、scapy简介与安装scapy(http://www.secdev.org/projects/scapy/)是一个强大的交互式数据包处理
- 问题:有3扇关闭的门,一扇门后面停着汽车,其余门后是山羊,只有主持人知道每扇门后面是什么。参赛者可以选择一扇门,在开启它之前,主持人会开启另
- 第一列按照goodsid局部分组,然后在分组后的记录中按照audittime升序排序得到序号,从而显示某商品得第几次变迁。 第二列是取该商品
- Python 10进制数与16进制数相互转换10进制转为16进制在Python中,我们可以使用内置的hex()函数将10进制数转换为16进制
- 做开发中难免时间类型之间的转换, 最近就发现前端js和后端django经常要用到这个转换, 其中jsDate.now()精确到毫秒,而Pyt
- 利用Python处理数据时,处理完成后输出结果为二维的列表,如果我们想把这个列表输出到Excel中形成格式化的数据,其实和输出到TXT文件大
- 这篇文章将会为大家介绍GoFrame gset使用入门,为了让大家更好的理解,会简明扼要的分析一下集合类型Set的特点,对比一下Java、P
- 类(class)抽象的概念,比如说人类、鸟类、水果、是一个总的称呼,没有具体到某个物体;对象(object,指具体实例,instance);
- 用javascript实现Base64编码—解决中文问题因javascript求出来的是Unicode要转换成Ansi后才能对它进行Base
- 本文实例讲述了PHP判断密码强度的方法。分享给大家供大家参考,具体如下:一、php页面$score = 0;if(!empty($_GET[
- 前言因为自已平时会把一个常用到逻辑写成一个工具python脚本,像关于时间字符串处理,像关于路径和文件夹遍历什么的工具。每一次新建一个项目的
- 阅读目录• 下载MySQL免安装版• 配置MySQL数据库• MySQL环境变量• 安装MySQL数据库 公司服务器是Window
- 一个字典就是一个键对应一个单值的映射。如果你想要一个键映射多个值,那么你就需要将这多个值放到另外的容器中, 比如列表或者集合里面。比如,你可
- 我第一次接触爬虫这东西是在今年的5月份,当时写了一个博客搜索引擎,所用到的爬虫也挺智能的,起码比电影来了这个站用到的爬虫水平高多了!回到用P
- 在 Python 2.5 中, with 关键字被加入。它将常用的 try ... except ... finally ... 模式很方便
- 这篇文章主要介绍了Python hashlib常见摘要算法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,