opencv+mediapipe实现人脸检测及摄像头实时示例
作者:墙缝里的草 发布时间:2022-08-11 17:58:44
标签:opencv,mediapipe,人脸检测,摄像头实时
单张人脸关键点检测
定义可视化图像函数
导入三维人脸关键点检测模型
导入可视化函数和可视化样式
读取图像
将图像模型输入,获取预测结果
BGR转RGB
将RGB图像输入模型,获取预测结果
预测人人脸个数
可视化人脸关键点检测效果
绘制人来脸和重点区域轮廓线,返回annotated_image
绘制人脸轮廓、眼睫毛、眼眶、嘴唇
在三维坐标中分别可视化人脸网格、轮廓、瞳孔
import cv2 as cv
import mediapipe as mp
from tqdm import tqdm
import time
import matplotlib.pyplot as plt
# 定义可视化图像函数
def look_img(img):
img_RGB=cv.cvtColor(img,cv.COLOR_BGR2RGB)
plt.imshow(img_RGB)
plt.show()
# 导入三维人脸关键点检测模型
mp_face_mesh=mp.solutions.face_mesh
# help(mp_face_mesh.FaceMesh)
model=mp_face_mesh.FaceMesh(
static_image_mode=True,#TRUE:静态图片/False:摄像头实时读取
refine_landmarks=True,#使用Attention Mesh模型
min_detection_confidence=0.5, #置信度阈值,越接近1越准
min_tracking_confidence=0.5,#追踪阈值
)
# 导入可视化函数和可视化样式
mp_drawing=mp.solutions.drawing_utils
mp_drawing_styles=mp.solutions.drawing_styles
# 读取图像
img=cv.imread('img.png')
# look_img(img)
# 将图像模型输入,获取预测结果
# BGR转RGB
img_RGB=cv.cvtColor(img,cv.COLOR_BGR2RGB)
# 将RGB图像输入模型,获取预测结果
results=model.process(img_RGB)
# 预测人人脸个数
len(results.multi_face_landmarks)
print(len(results.multi_face_landmarks))
# 结果:1
# 可视化人脸关键点检测效果
# 绘制人来脸和重点区域轮廓线,返回annotated_image
annotated_image=img.copy()
if results.multi_face_landmarks: #如果检测出人脸
for face_landmarks in results.multi_face_landmarks:#遍历每一张脸
#绘制人脸网格
mp_drawing.draw_landmarks(
image=annotated_image,
landmark_list=face_landmarks,
connections=mp_face_mesh.FACEMESH_TESSELATION,
#landmark_drawing_spec为关键点可视化样式,None为默认样式(不显示关键点)
# landmark_drawing_spec=mp_drawing_styles.DrawingSpec(thickness=1,circle_radius=2,color=[66,77,229]),
landmark_drawing_spec=None,
connection_drawing_spec=mp_drawing_styles.get_default_face_mesh_tesselation_style()
)
#绘制人脸轮廓、眼睫毛、眼眶、嘴唇
mp_drawing.draw_landmarks(
image=annotated_image,
landmark_list=face_landmarks,
connections=mp_face_mesh.FACEMESH_CONTOURS,
# landmark_drawing_spec为关键点可视化样式,None为默认样式(不显示关键点)
# landmark_drawing_spec=mp_drawing_styles.DrawingSpec(thickness=1,circle_radius=2,color=[66,77,229]),
landmark_drawing_spec=None,
connection_drawing_spec=mp_drawing_styles.get_default_face_mesh_tesselation_style()
)
#绘制瞳孔区域
mp_drawing.draw_landmarks(
image=annotated_image,
landmark_list=face_landmarks,
connections=mp_face_mesh.FACEMESH_IRISES,
# landmark_drawing_spec为关键点可视化样式,None为默认样式(不显示关键点)
landmark_drawing_spec=mp_drawing_styles.DrawingSpec(thickness=1,circle_radius=2,color=[128,256,229]),
# landmark_drawing_spec=None,
connection_drawing_spec=mp_drawing_styles.get_default_face_mesh_tesselation_style()
)
cv.imwrite('test.jpg',annotated_image)
look_img(annotated_image)
# 在三维坐标中分别可视化人脸网格、轮廓、瞳孔
mp_drawing.plot_landmarks(results.multi_face_landmarks[0],mp_face_mesh.FACEMESH_TESSELATION)
mp_drawing.plot_landmarks(results.multi_face_landmarks[0],mp_face_mesh.FACEMESH_CONTOURS)
mp_drawing.plot_landmarks(results.multi_face_landmarks[0],mp_face_mesh.FACEMESH_IRISES)
单张图像人脸检测
可以通过调用open3d实现3d模型建立,部分代码与上面类似
import cv2 as cv
import mediapipe as mp
import numpy as np
from tqdm import tqdm
import time
import matplotlib.pyplot as plt
# 定义可视化图像函数
def look_img(img):
img_RGB=cv.cvtColor(img,cv.COLOR_BGR2RGB)
plt.imshow(img_RGB)
plt.show()
# 导入三维人脸关键点检测模型
mp_face_mesh=mp.solutions.face_mesh
# help(mp_face_mesh.FaceMesh)
model=mp_face_mesh.FaceMesh(
static_image_mode=True,#TRUE:静态图片/False:摄像头实时读取
refine_landmarks=True,#使用Attention Mesh模型
max_num_faces=40,
min_detection_confidence=0.2, #置信度阈值,越接近1越准
min_tracking_confidence=0.5,#追踪阈值
)
# 导入可视化函数和可视化样式
mp_drawing=mp.solutions.drawing_utils
# mp_drawing_styles=mp.solutions.drawing_styles
draw_spec=mp_drawing.DrawingSpec(thickness=2,circle_radius=1,color=[223,155,6])
# 读取图像
img=cv.imread('../人脸三维关键点检测/dkx.jpg')
# width=img1.shape[1]
# height=img1.shape[0]
# img=cv.resize(img1,(width*10,height*10))
# look_img(img)
# 将图像模型输入,获取预测结果
# BGR转RGB
img_RGB=cv.cvtColor(img,cv.COLOR_BGR2RGB)
# 将RGB图像输入模型,获取预测结果
results=model.process(img_RGB)
# # 预测人人脸个数
# len(results.multi_face_landmarks)
#
# print(len(results.multi_face_landmarks))
if results.multi_face_landmarks:
for face_landmarks in results.multi_face_landmarks:
mp_drawing.draw_landmarks(
image=img,
landmark_list=face_landmarks,
connections=mp_face_mesh.FACEMESH_CONTOURS,
landmark_drawing_spec=draw_spec,
connection_drawing_spec=draw_spec
)
else:
print('未检测出人脸')
look_img(img)
mp_drawing.plot_landmarks(results.multi_face_landmarks[0],mp_face_mesh.FACEMESH_TESSELATION)
mp_drawing.plot_landmarks(results.multi_face_landmarks[1],mp_face_mesh.FACEMESH_CONTOURS)
mp_drawing.plot_landmarks(results.multi_face_landmarks[1],mp_face_mesh.FACEMESH_IRISES)
# 交互式三维可视化
coords=np.array(results.multi_face_landmarks[0].landmark)
# print(len(coords))
# print(coords)
def get_x(each):
return each.x
def get_y(each):
return each.y
def get_z(each):
return each.z
# 分别获取所有关键点的XYZ坐标
points_x=np.array(list(map(get_x,coords)))
points_y=np.array(list(map(get_y,coords)))
points_z=np.array(list(map(get_z,coords)))
# 将三个方向的坐标合并
points=np.vstack((points_x,points_y,points_z)).T
print(points.shape)
import open3d
point_cloud=open3d.geometry.PointCloud()
point_cloud.points=open3d.utility.Vector3dVector(points)
open3d.visualization.draw_geometries([point_cloud])
这是建立的3d的可视化模型,可以通过鼠标拖动将其旋转
摄像头实时关键点检测
定义可视化图像函数
导入三维人脸关键点检测模型
导入可视化函数和可视化样式
读取单帧函数
主要代码和上面的图像类似
import cv2 as cv
import mediapipe as mp
from tqdm import tqdm
import time
import matplotlib.pyplot as plt
# 导入三维人脸关键点检测模型
mp_face_mesh=mp.solutions.face_mesh
# help(mp_face_mesh.FaceMesh)
model=mp_face_mesh.FaceMesh(
static_image_mode=False,#TRUE:静态图片/False:摄像头实时读取
refine_landmarks=True,#使用Attention Mesh模型
max_num_faces=5,#最多检测几张人脸
min_detection_confidence=0.5, #置信度阈值,越接近1越准
min_tracking_confidence=0.5,#追踪阈值
)
# 导入可视化函数和可视化样式
mp_drawing=mp.solutions.drawing_utils
mp_drawing_styles=mp.solutions.drawing_styles
# 处理单帧的函数
def process_frame(img):
#记录该帧处理的开始时间
start_time=time.time()
img_RGB=cv.cvtColor(img,cv.COLOR_BGR2RGB)
results=model.process(img_RGB)
if results.multi_face_landmarks:
for face_landmarks in results.multi_face_landmarks:
# mp_drawing.draw_detection(
# image=img,
# landmarks_list=face_landmarks,
# connections=mp_face_mesh.FACEMESH_TESSELATION,
# landmarks_drawing_spec=None,
# landmarks_drawing_spec=mp_drawing_styles.get_default_face_mesh_tesselation_style()
# )
# 绘制人脸网格
mp_drawing.draw_landmarks(
image=img,
landmark_list=face_landmarks,
connections=mp_face_mesh.FACEMESH_TESSELATION,
# landmark_drawing_spec为关键点可视化样式,None为默认样式(不显示关键点)
# landmark_drawing_spec=mp_drawing_styles.DrawingSpec(thickness=1,circle_radius=2,color=[66,77,229]),
landmark_drawing_spec=None,
connection_drawing_spec=mp_drawing_styles.get_default_face_mesh_tesselation_style()
)
# 绘制人脸轮廓、眼睫毛、眼眶、嘴唇
mp_drawing.draw_landmarks(
image=img,
landmark_list=face_landmarks,
connections=mp_face_mesh.FACEMESH_CONTOURS,
# landmark_drawing_spec为关键点可视化样式,None为默认样式(不显示关键点)
# landmark_drawing_spec=mp_drawing_styles.DrawingSpec(thickness=1,circle_radius=2,color=[66,77,229]),
landmark_drawing_spec=None,
connection_drawing_spec=mp_drawing_styles.get_default_face_mesh_tesselation_style()
)
# 绘制瞳孔区域
mp_drawing.draw_landmarks(
image=img,
landmark_list=face_landmarks,
connections=mp_face_mesh.FACEMESH_IRISES,
# landmark_drawing_spec为关键点可视化样式,None为默认样式(不显示关键点)
# landmark_drawing_spec=mp_drawing_styles.DrawingSpec(thickness=1, circle_radius=2, color=[0, 1, 128]),
landmark_drawing_spec=None,
connection_drawing_spec=mp_drawing_styles.get_default_face_mesh_tesselation_style())
else:
img = cv.putText(img, 'NO FACE DELECTED', (25 , 50 ), cv.FONT_HERSHEY_SIMPLEX, 1.25,
(218, 112, 214), 1, 8)
#记录该帧处理完毕的时间
end_time=time.time()
#计算每秒处理图像的帧数FPS
FPS=1/(end_time-start_time)
scaler=1
img=cv.putText(img,'FPS'+str(int(FPS)),(25*scaler,100*scaler),cv.FONT_HERSHEY_SIMPLEX,1.25*scaler,(0,0,255),1,8)
return img
# 调用摄像头
cap=cv.VideoCapture(0)
cap.open(0)
# 无限循环,直到break被触发
while cap.isOpened():
success,frame=cap.read()
# if not success:
# print('ERROR')
# break
frame=process_frame(frame)
#展示处理后的三通道图像
cv.imshow('my_window',frame)
if cv.waitKey(1) &0xff==ord('q'):
break
cap.release()
cv.destroyAllWindows()
来源:https://blog.csdn.net/weixin_52465909/article/details/122183470
0
投稿
猜你喜欢
- 本文实例讲述了PHP+redis实现添加处理投票的方法。分享给大家供大家参考,具体如下:<?php header("Cont
- 前言本文提供将音频提升音量的python代码,一如既往的实用主义代码。环境依赖ffmpeg环境安装ffmpy安装:pip install f
- 1、sqldmo SQLDMO是操作SQLServer的理想的方式,如果您的数据库是SQLServer就可以考虑使用这种方式。在C#中使用S
- 微软在12月22日早上发布新的安全通告证实,一处远程执行代码漏洞影响到了整个SQL Server产品线。该漏洞的入侵代码在两周前已经被公布在
- 错误信息:ERROR 1862 (HY000): Your password has expired. To log in you must
- 引言我看到很多 golang 社区的开发者,特别是因为它的简单性而被吸引的开发者,对 golang 中的事情应该如何处理做出了一些快速的判断
- 在技术更新的进程中, 仍然有一些人死抱着已经过了气的东西不放. 也有一些人虽然进入到新的世界, 但仍摆脱不了陈
- 前言不管是做开发还是做过网站的朋友们,应该对于User Agent一点都不陌生,User Agent 中文名为用户代理,简称 UA,它是一个
- 用golang来实现的webserver通常是是这样的//main.gopackage mainimport ("fmt"
- 本文实例讲述了python中pass语句用法。分享给大家供大家参考。具体分析如下:1、空语句 do nothing2、保证格式完整3、保证语
- echo是PHP语句, print和print_r是函数,语句没有返回值,函数可以有返回值(即便没有用) print只
- 一、制作播放器的思路制作一个多功能音乐播放器的思路确定播放器的需求和功能,例如支持哪些音频格式、播放列表管理、循环播放、暂停、进度条显示等等
- 本文实例分析了Python中的异常处理try/except/finally/raise用法。分享给大家供大家参考,具体如下:异常发生在程序执
- 1. python中的变量:python中的变量声明不需要像C++、Java那样指定变量数据类型(int、float等),因为python会
- 一、Pycharm安装Django框架二、新建Django项目1、manage.py是个管理角色,拥有的功能包括:(1)创建app: pyt
- 方便删除数据库中所有的数据表,清空数据库,有些有约束,不能直接delete,需要先删除库中的约束,代码如下 --删除所有约束 DECLARE
- 上一篇中的方法在 webpack 更新后,uglify 缓存地址也发生了变化,需要重新找地址。后来测试发现不论是 uglify-js2 ug
- 本文主要介绍我在利用Django写文章时,采用的注册方法。首先说一下整体逻辑思路:•处理用户注册数据,•产生token,生成验证URL,•发
- 本文实例为大家分享了微信小程序实现登陆注册滑块验证的具体代码,供大家参考,具体内容如下一、创建自定义组件MoveVerifyMoveVeri
- 一:建立对象引用计数1. 相关代码void_Py_NewReference(PyObject *op){ if (