网络编程
位置:首页>> 网络编程>> Python编程>> Python中识别图片/滑块验证码准确率极高的ddddocr库详解

Python中识别图片/滑块验证码准确率极高的ddddocr库详解

作者:上海-悠悠  发布时间:2021-10-05 05:20:17 

标签:Python,ddddocr,识别,验证码

前言

验证码的种类有很多,它是常用的一种反爬手段,包括:图片验证码,滑块验证码,等一些常见的验证码场景。

识别验证码的python 库有很多,用起来也并不简单,这里推荐一个简单实用的识别验证码的库 ddddocr (带带弟弟ocr)库.

环境准备

python 版本要求小于等于python3.9 版本

pip 安装

pip install ddddocr

下载的安装包比较大,一般用国内的下载源可以加快下载速度

pip install ddddocr -i https://pypi.douban.com/simple

github地址 https://github.com/sml2h3/ddddocr

快速开始

先随便找个纯英文的验证码,保持为a1.png

Python中识别图片/滑块验证码准确率极高的ddddocr库详解

代码示例

import ddddocr                       # 导入 ddddocr
ocr = ddddocr.DdddOcr()              # 实例化
with open('a1.png', 'rb') as f:     # 打开图片
   img_bytes = f.read()             # 读取图片
res = ocr.classification(img_bytes)  # 识别
print(res)

运行结果

Python中识别图片/滑块验证码准确率极高的ddddocr库详解

已经能识别到 xnen ,但是会出现"欢迎使用ddddocr,本项目专注带动行业内卷…"提示语, 可以加一个参数show_ad=False

import ddddocr                       # 导入 ddddocr
ocr = ddddocr.DdddOcr(show_ad=False)              # 实例化
with open('a1.png', 'rb') as f:     # 打开图片
   img_bytes = f.read()             # 读取图片
res = ocr.classification(img_bytes)  # 识别
print(res)

图片验证码

识别一下三种验证码

Python中识别图片/滑块验证码准确率极高的ddddocr库详解

Python中识别图片/滑块验证码准确率极高的ddddocr库详解

Python中识别图片/滑块验证码准确率极高的ddddocr库详解

代码示例

import ddddocr                       # 导入 ddddocr
ocr = ddddocr.DdddOcr(show_ad=False)              # 实例化
with open('a2.png', 'rb') as f:     # 打开图片
   img_bytes = f.read()             # 读取图片
res2 = ocr.classification(img_bytes)  # 识别

print(res2)
with open('a3.png', 'rb') as f:     # 打开图片
   img_bytes = f.read()             # 读取图片
res3 = ocr.classification(img_bytes)  # 识别
print(res3)

with open('a4.png', 'rb') as f:     # 打开图片
   img_bytes = f.read()             # 读取图片
res4 = ocr.classification(img_bytes)  # 识别
print(res4)

运行结果

giv6j
zppk
4Tskh

滑块验证码

滑块验证码场景如下场景示例

Python中识别图片/滑块验证码准确率极高的ddddocr库详解

先抠出2张图片,分别为background.png 和 target.png

Python中识别图片/滑块验证码准确率极高的ddddocr库详解

Python中识别图片/滑块验证码准确率极高的ddddocr库详解

解决问题的重点是计算缺口的位置

import ddddocr

det = ddddocr.DdddOcr(det=False, ocr=False, show_ad=False)

with open('target.png', 'rb') as f:
   target_bytes = f.read()

with open('background.png', 'rb') as f:
   background_bytes = f.read()

res = det.slide_match(target_bytes, background_bytes, simple_target=True)
print(res)

运行结果

{'target_y': 0, 'target': [184, 58, 246, 120]}

target 的四个值就是缺口位置的左上角和右下角的左边位置

识别中文

识别图片上的文字

Python中识别图片/滑块验证码准确率极高的ddddocr库详解

import ddddocr
import cv2

det = ddddocr.DdddOcr(det=True)

with open("test.png", 'rb') as f:
   image = f.read()

poses = det.detection(image)

im = cv2.imread("test.png")

for box in poses:
   x1, y1, x2, y2 = box
   im = cv2.rectangle(im, (x1, y1), (x2, y2), color=(0, 0, 255), thickness=2)

cv2.imwrite("result.jpg", im)

保存后的图片

Python中识别图片/滑块验证码准确率极高的ddddocr库详解

来源:https://blog.csdn.net/qq_27371025/article/details/129147852

0
投稿

猜你喜欢

手机版 网络编程 asp之家 www.aspxhome.com