Pandas的read_csv函数参数分析详解
作者:Lavi_qq_2910138025 发布时间:2021-06-02 13:40:15
函数原型
pd.read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, iterator=False, chunksize=None, compression='infer', thousands=None, decimal=b'.', lineterminator=None, quotechar='"', quoting=0, escapechar=None, comment=None, encoding=None, dialect=None, tupleize_cols=False, error_bad_lines=True, warn_bad_lines=True, skipfooter=0, skip_footer=0, doublequote=True, delim_whitespace=False, as_recarray=False, compact_ints=False, use_unsigned=False, low_memory=True, buffer_lines=None, memory_map=False, float_precision=None)
必填参数
filepath_or_buffer : str,pathlib。str, pathlib.Path,
py._path.local.LocalPath or any object with a read() method
(such as a file handle or StringIO)
读取文件路径,可以是URL,可用URL类型包括:http, ftp, s3和文件。
常用参数
sep :str, default ‘,'
指定分隔符。如果不指定参数,则会尝试使用逗号分隔。csv文件一般为逗号分隔符。
delimiter : str, default None
定界符,备选分隔符(如果指定该参数,则sep参数失效)
delim_whitespace :boolean, default False.
指定空格(例如' ‘或者' ‘)是否作为分隔符使用,等效于设定sep='\s+'。
如果这个参数设定为Ture那么delimiter 参数失效。
header :int or list of ints, default ‘infer'
指定行数用来作为列名,数据开始行数。如果文件中没有列名,则默认为0,否则设置为None。对于数据读取有表头和没表头的情况很实用
header :int or list of ints, default ‘infer'
指定行数用来作为列名,数据开始行数。如果文件中没有列名,则默认为0,否则设置为None。
names : array-like, default None
用于结果的列名列表,对各列重命名,即添加表头。
如数据有表头,但想用新的表头,可以设置header=0,names=['a','b']实现表头定制。
index_col : int or sequence or False, default None
用作行索引的列编号或者列名,如果给定一个序列则有多个行索引。
可使用index_col=[0,1]来指定文件中的第1和2列为索引列。
usecols : array-like, default None
返回一个数据子集,即选取某几列,不读取整个文件的内容,有助于加快速度和降低内存。
usecols=[1,2]或usercols=['a','b']
squeeze : boolean, default False
如果文件只包含一列,则返回一个Series
prefix : str, default None
在没有列标题时,给列添加前缀。例如:添加‘X' 成为 X0, X1, ...
mangle_dupe_cols : boolean, default True
重复的列,将‘X'...'X'表示为‘X.0'...'X.N'。如果设定为False则会将所有重名列覆盖。
不太常用参数
dtype : Type name or dict of column -> type, default None
每列数据的数据类型。例如 {‘a': np.float64, ‘b': np.int32}
engine : {‘c', ‘python'}, optional
使用的分析引擎。可以选择C或者是python。C引擎快但是Python引擎功能更加完备。
converters : dict, default None
列转换函数的字典。key可以是列名或者列的序号。
true_values和false_values : list, default None
Values to consider as True or False
skipinitialspace :boolean, default False
忽略分隔符后的空白(默认为False,即不忽略)
skiprows : list-like or integer, default None
需要忽略的行数(从文件开始处算起),或需要跳过的行号列表(从0开始)。
skipfooter : int, default 0
从文件尾部开始忽略。 (c引擎不支持)
nrows : int, default None
需要读取的行数(从文件头开始算起)。
na_values : scalar, str, list-like, or dict, default None
一组用于替换NA/NaN的值。如果传参,需要制定特定列的空值。
默认为‘1.#IND', ‘1.#QNAN', ‘N/A', ‘NA', ‘NULL', ‘NaN', ‘nan'`.
keep_default_na : bool, default True
如果指定na_values参数,并且keep_default_na=False,那么默认的NaN将被覆盖,否则添加。
na_filter : boolean, default True
是否检查丢失值(空字符串或者是空值)。
对于大文件来说数据集中没有空值,设定na_filter=False可以提升读取速度。
verbose :boolean, default False
是否打印各种解析器的输出信息,例如:“非数值列中缺失值的数量”等。
skip_blank_lines :boolean, default True
如果为True,则跳过空行;否则记为NaN。
encoding : str, default None
指定字符集类型,通常指定为'utf-8'. List of Python standard encodings
dialect : str or csv.Dialect instance, default None
如果没有指定特定的语言,如果sep大于一个字符则忽略。具体查看csv.Dialect 文档
tupleize_cols : boolean, default False
Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns)
error_bad_lines : boolean, default True
如果一行包含太多的列,那么默认不会返回DataFrame ,如果设置成false,那么会将改行剔除(只能在C解析器下使用)。
warn_bad_lines : boolean, default True
如果error_bad_lines =False,并且warn_bad_lines =True 那么所有的“bad lines”将会被输出(只能在C解析器下使用)。
low_memory : boolean, default True
分块加载到内存,在低内存消耗中解析。但是可能出现类型混淆。
确保类型不被混淆需要设置为False。或者使用dtype 参数指定类型。
注意使用chunksize 或者iterator 参数分块读入会将整个文件读入到一个Dataframe,
而忽略类型(只能在C解析器中有效)
日期类型相关参数
parse_dates : boolean or list of ints or names or list of lists or dict, default False
boolean. True -> 解析索引
list of ints or names. e.g. If [1, 2, 3] -> 解析1,2,3列的值作为独立的日期列;
list of lists. e.g. If [[1, 3]] -> 合并1,3列作为一个日期列使用
dict, e.g. {‘foo' : [1, 3]} -> 将1,3列合并,并给合并后的列起名为"foo"
示例:df=pd.read_csv(file_path,parse_dates=['time1','time2']),
把time1和time2两列解析为日期格式。
这里不得不说,很遗憾中文不行,比如‘4月5日'这种格式就不能解析。
infer_datetime_format :boolean, default False
如果设定为True并且parse_dates 可用,那么pandas将尝试转换为日期类型,如果可以转换,转换方法并解析。
在某些情况下会快5~10倍。
keep_date_col : boolean, default False
如果连接多列解析日期,则保持参与连接的列。默认为False。
date_parser : function, default None
于解析日期的函数,默认使用dateutil.parser.parser来做转换。
Pandas尝试使用三种不同的方式解析,如果遇到问题则使用下一种方式。
1.使用一个或者多个arrays(由parse_dates指定)作为参数;
2.连接指定多列字符串作为一个列作为参数;
3.每行调用一次date_parser函数来解析一个或者多个字符串(由parse_dates指定)作为参数。
dayfirst : boolean, default False
DD/MM格式的日期类型
大文件常用参数
iterator : boolean, default False
返回一个TextFileReader 对象,以便逐块处理文件。
chunksize : int, default None
文件块的大小, See IO Tools docs for more informationon iterator and chunksize.
chunksize : int, default None
文件块的大小, See IO Tools docs for more informationon iterator and chunksize.
chunksize : int, default None
文件块的大小, See IO Tools docs for more informationon iterator and chunksize.
decimal : str, default ‘.'
字符中的小数点 (例如:欧洲数据使用',‘).
float_precision : string, default None
Specifies which converter the C engine should use for floating-point values.
The options are None for the ordinary converter, high for the high-precision converter,
and round_trip for the round-trip converter.
lineterminator : str (length 1), default None
行分割符,只在C解析器下使用。
quotechar : str (length 1), optional
引号,用作标识开始和解释的字符,引号内的分割符将被忽略。
quoting : int or csv.QUOTE_* instance, default 0
控制csv中的引号常量。
可选 QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3)
doublequote : boolean, default True
双引号,当单引号已经被定义,并且quoting 参数不是QUOTE_NONE的时候,
使用双引号表示引号内的元素作为一个元素使用。
escapechar : str (length 1), default None
当quoting 为QUOTE_NONE时,指定一个字符使的不受分隔符限值。
comment : str, default None
标识着多余的行不被解析。如果该字符出现在行首,这一行将被全部忽略。
这个参数只能是一个字符,空行(就像skip_blank_lines=True)注释行被header和skiprows忽略一样。
例如如果指定comment='#' 解析‘#empty\na,b,c\n1,2,3' 以header=0 那么返回结果将是以'a,b,c'作为header。
读取多个文件
#读取多个文件
import pandas
import glob
for r in glob.glob("test*.csv"):
csv=pandas.read_csv(r)
csv.to_csv("test.txt",mode="a+")
来源:https://blog.csdn.net/liuweiyuxiang/article/details/78471036
猜你喜欢
- var iframe = document.createElement("iframe"); iframe.id = &
- 背景开发项目时应学会站在巨人的肩膀上,即有效利用开发组件进行或工具提升自己的研发效率对于较简单的单体函数而言,只需要依赖原生的SDK即可完成
- 1、RuntimeError: invalid argument 0: Sizes of tensors must match except
- 每个产品诞生的背后都凝结着一位或是多位设计师的心血,在产品的诞生过程中文化、科技、环保、创意等这些方方面面的细节集结成一个绚丽的故事,因为有
- 在Python的标准库中,functools库中有很多对方法有操作的封装功能,partial Objects就是其中之一,他可以实现对方法参
- 项目结构:源代码:# -*- coding: utf-8 -*-"""@date: 2022/01
- 前言说到如何用Python执行线性回归,大部分人会立刻想到用sklearn的linear_model,但事实是,Python至少有8种执行线
- 本文实例讲述了Python全局变量用法。分享给大家供大家参考,具体如下:全局变量不符合参数传递的精神,所以,平时我很少使用,除非定义常量。今
- #!/usr/bin/env python# -*- coding: utf8 -*-import MySQLdbimport timeim
- 前言很多开发同学对SQL优化如数家珍,却对MySQL架构一知半解。岂不是只见树叶,不见森林,终将陷入细节中不能自拔。今天就一块学习MySQL
- 使用ES做搜索引擎拉取数据的时候,如果数据量太大,通过传统的from + size的方式并不能获取所有的数据(默认最大记录数10000),因
- 自定义图片生成词云图的多种方法有时候我们会根据具体的场景来结合图片展示词云,比如我分析的是美团评论,那么最好的展示方法就是利用美团的logo
- 本文实例分析了Python多线程操作数据库相关问题。分享给大家供大家参考,具体如下:python多线程并发操作数据库,会存在链接数据库超时、
- 目录前言1.什么是锁2.InnoDB存储引擎中的锁2.1锁的类型2.2 一致性非锁定读2.3 一致性锁定读3 锁的算法3.1行锁的3中算法总
- 一.使用库说明Golang中连接kafka可以使用第三方库:github.com/Shopify/sarama二.Kafka Produce
- 随着网页技术的发展,网络视觉设计与之前以程序员为主导的审美特征相比,具有了极大的改观。同时,随着美术、音乐、舞蹈人才的加入,网络开始在这一社
- 本文实例讲述了JavaScript简单获取页面图片原始尺寸的方法。分享给大家供大家参考,具体如下:这里通过Image()对象获取原始宽高这种
- 本文实例为大家分享了python修改装饰器中参数的具体代码,供大家参考,具体内容如下案例: &
- 如下所示:#python解决字符串倒序输出def string_reverse(m): num=len(m) a=[] for i in r
- 前言最近在数据库的一张表添加两个字段,后来提示什么磁盘空间不足什么什么的,后来数据库就断开连接了,之后就一直连接不上去后来,最后经过思考终于