PID原理与python的简单实现和调参
作者:Scc_hy??????? 发布时间:2021-08-13 13:27:36
一、前言
近期在实际项目中使用到了PID控制算法,于是就该算法做一总结。
二、PID控制算法详解
2.1 比例控制算法
例子: 假设一个水缸,需要最终控制水缸的水位永远维持在1米的高度。
水位目标:T 当前水位:Tn 加水量:U 误差:error error=T-Tn 比例控制系数:kp U = k_p * errorU=kp∗error initial: T=1; Tn=0.2, error=1-0.2=0.8; kp=0.4
2.1.1 比例控制python简单示意
T=1
Tn=0.2
error=1-0.2
kp=0.4
for t in range(1, 10):
U = kp * error
Tn += U
error = T-Tn
print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f}')
"""
t=1 | add 0.32000 => Tn=0.52000 error=0.48000
t=2 | add 0.19200 => Tn=0.71200 error=0.28800
t=3 | add 0.11520 => Tn=0.82720 error=0.17280
t=4 | add 0.06912 => Tn=0.89632 error=0.10368
t=5 | add 0.04147 => Tn=0.93779 error=0.06221
t=6 | add 0.02488 => Tn=0.96268 error=0.03732
t=7 | add 0.01493 => Tn=0.97761 error=0.02239
t=8 | add 0.00896 => Tn=0.98656 error=0.01344
t=9 | add 0.00537 => Tn=0.99194 error=0.00806
"""
2.1.2 比例控制存在的一些问题
根据kp取值不同,系统最后都会达到1米,只不过kp大了达到的更快。不会有稳态误差。 若存在漏水情况,在相同情况下,经过多次加水后,水位会保持在0.75不在再变化,因为当U和漏水量一致的时候将保持不变——即稳态误差 U=k_p*error=0.1 => error = 0.1/0.4 = 0.25U=kp∗error=0.1=>error=0.1/0.4=0.25,所以误差永远保持在0.25
T=1
Tn=0.2
error=1-0.2
kp=0.4
extra_drop = 0.1
for t in range(1, 100):
U = kp * error
Tn += U - extra_drop
error = T-Tn
print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f}')
"""
t=95 | add 0.10000 => Tn=0.75000 error=0.25000
t=96 | add 0.10000 => Tn=0.75000 error=0.25000
t=97 | add 0.10000 => Tn=0.75000 error=0.25000
t=98 | add 0.10000 => Tn=0.75000 error=0.25000
t=99 | add 0.10000 => Tn=0.75000 error=0.25000
"""
实际情况中,这种类似水缸漏水的情况往往更加常见
比如控制汽车运动,摩擦阻力就相当于是"漏水"
控制机械臂、无人机的飞行,各类阻力和消耗相当于"漏水"
所以单独的比例控制,很多时候并不能满足要求
2.2 积分控制算法(消除稳态误差)
比例+积分控制算法:
误差累计
积分控制系数
2.2.1 python简单实现
T=1
Tn=0.2
error=1-0.2
kp=0.4
extra_drop = 0.1
ki=0.2
sum_error = 0
for t in range(1, 20):
sum_error += error
U = kp * error + ki * sum_error
Tn += U - extra_drop
error = T-Tn
print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f}')
"""
t=14 | add 0.10930 => Tn=0.97665 error=0.02335
t=15 | add 0.11025 => Tn=0.98690 error=0.01310
t=16 | add 0.10877 => Tn=0.99567 error=0.00433
t=17 | add 0.10613 => Tn=1.00180 error=-0.00180
t=18 | add 0.10332 => Tn=1.00512 error=-0.00512
t=19 | add 0.10097 => Tn=1.00608 error=-0.00608
"""
2.3 微分控制算法(减少控制中的震荡)
在越靠近目标的时候则加的越少。
kd: 微分控制系数
d_error/d_t ~= error_t - error_t_1:误差的变化
3.3.1 加入微分控制算法的python简单示意
令:kd=0.2; d_error = 当前时刻误差-前时刻误差
T=1
Tn=0.2
error=1-0.2
kp=0.4
extra_drop = 0.1
ki=0.2
sum_error = 0
kd=0.2
d_error = 0
error_n = 0
error_b = 0
for t in range(1, 20):
error_b = error_n
error_n = error
# print(error_b1, error_b2)
d_error = error_n - error_b if t >= 2 else 0
sum_error += error
U = kp * error + ki * sum_error + kd * d_error
Tn += U - extra_drop
error = T-Tn
print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f} | d_error: {d_error:.5f}')
"""
t=14 | add 0.09690 => Tn=0.96053 error=0.03947 | d_error: 0.01319
t=15 | add 0.10402 => Tn=0.96455 error=0.03545 | d_error: 0.00310
t=16 | add 0.10808 => Tn=0.97263 error=0.02737 | d_error: -0.00402
t=17 | add 0.10951 => Tn=0.98214 error=0.01786 | d_error: -0.00808
t=18 | add 0.10899 => Tn=0.99113 error=0.00887 | d_error: -0.00951
t=19 | add 0.10727 => Tn=0.99840 error=0.00160 | d_error: -0.00899
"""
2.4 PID算法总结
for kp_i in np.linspace(0, 1, 10): pid_plot(kp=kp_i, ki=0.2, kd=0.2)
for ki_i in np.linspace(0, 1, 10): pid_plot(kp=0.5, ki=ki_i, kd=0.2)
for kd_i in np.linspace(0, 1, 10): pid_plot(kp=0.5, ki=0.2, kd=kd_i)
pid_plot(kp=0.65, ki=0.05, kd=0.5, print_flag=True)
三、牛顿法调参
损失函数采用:RMSE
from scipy import optimize
import matplotlib.pyplot as plt
import numpy as np
def pid_plot(args, plot_flag=True, print_flag=False):
kp, ki, kd = args
T=1
Tn=0.2
error=1-0.2
extra_drop = 0.1
sum_error = 0
d_error = 0
error_n = 0
error_b = 0
Tn_list = []
for t in range(1, 100):
error_b = error_n
error_n = error
d_error = error_n - error_b if t >= 2 else 0
sum_error += error
U = kp * error + ki * sum_error + kd * d_error
Tn += U - extra_drop
error = T-Tn
Tn_list.append(Tn)
if print_flag:
print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f} | d_error: {d_error:.5f}')
if plot_flag:
plt.plot(Tn_list)
plt.axhline(1, linestyle='--', color='darkred', alpha=0.8)
plt.title(f'$K_p$={kp:.3f} $K_i$={ki:.3f} $K_d$={kd:.3f}')
plt.ylim([0, max(Tn_list) + 0.2])
plt.show()
loss = np.sqrt(np.mean(np.square(np.ones_like(Tn_list) - np.array(Tn_list))))
return loss
boundaries=[(0, 2), (0, 2), (0, 2)]
res = optimize.fmin_l_bfgs_b(pid_plot, np.array([0.1, 0.1, 0.1]), args=(False, False), bounds = boundaries, approx_grad = True)
pid_plot(res[0].tolist(), print_flag=True)
pid_plot([0.65, 0.05, 0.5], print_flag=True)
牛顿法调参结果图示 :
简单手动调参图示:
来源:https://juejin.cn/post/7135073754467532813


猜你喜欢
- golang 1.7版本中context库被很多标准库的模块所使用,比如net/http和os的一些模块中,利用这些原生模块,我们就不需要自
- 导言(Introduction)这个提案描述了如何在jQuery的核心库中增加模板支持。更为特别是,这个提案描述了一个新的jQuery方法-
- CAS 全称集中式认证服务(Central Authentication Service),是实现单点登录(SSO)的一中手段。CAS 的通
- PostgreSQL是一种特性非常齐全的自由软件的对象-关系型数据库管理系统(ORDBMS),是以加州大学计算机系开发的POSTGRES,4
- 一般我们可以使用背景图的方式给图片添加阴影,但对于不固定尺寸的图片如何实现呢?我们可以采取“视觉欺骗 * ”——定义渐变边框来实现运行代码框&
- 一、简介 transitions库pip install transitions状态机 state:状态节点transition:
- 原数据lambda函数处理我之前写了各种if substr函数,各种报错正确到热泪盈眶的函数data['Followers/Fans
- 二维列表转一维列表from compiler.ast import flattena=[[1,2],[5,6]]print(flatten(
- 本文实例为大家分享了pytorch绘制曲线的具体代码,供大家参考,具体内容如下import torchimport torch.nn.fun
- 列表推倒式 [结果 for 变量 in 可迭代对象 if 筛选]字典推倒式 {结果 for 变量 in 可迭代对象 if 筛选} 结果 =&
- 1. 引言本文重点介绍Python中的三个特殊函数Map,Filter和Reduce,以及如何使用它们进行代码编程。在开始介绍之前,我们先来
- 继续Mootools常用方法扩展,依然还是String类的扩展。方法:format说明:一个非常简单的format方法,和C#
- 本文实例为大家分享了python开发飞机大战游戏的具体代码,供大家参考,具体内容如下import pygameimport randomim
- easy_install 卸载通过easy_install 安装的模块可以直接通过 easy_install -m Packag
- 目录周期对比用法总结周期对比vue2vue3beforeCreatesetupcreatedsetupbeforeMountonBefore
- 今天在做一个老项目时,遇到一个需求,在javascript将url中的参数加密解密,从网上找发现了这段有用的代码:<SCRIPT LA
- 一、中文截取:mb_substr() mb_substr( $str, $start, $length, $encoding ) $str,
- 一起开发项目的时候总是要搭建环境和部署环境的,这个时候必须得有个python第三方包的list,一般都叫做requirements.txt。
- 函数重载的替代方法-伪重载,下面看一个具体的实例代码。<? php//函数重载的替代方法-伪重载////确实,在PHP中没有函数重载这
- f-string,亦称为格式化字符串常量(formatted string literals),是Python3.6新引入的一种字符串格式化