python sklearn常用分类算法模型的调用
作者:海涛anywn 发布时间:2021-06-18 11:42:25
标签:python,sklearn,分类算法模型
本文实例为大家分享了python sklearn分类算法模型调用的具体代码,供大家参考,具体内容如下
实现对'NB', 'KNN', 'LR', 'RF', 'DT', 'SVM','SVMCV', 'GBDT'模型的简单调用。
# coding=gbk
import time
from sklearn import metrics
import pickle as pickle
import pandas as pd
# Multinomial Naive Bayes Classifier
def naive_bayes_classifier(train_x, train_y):
from sklearn.naive_bayes import MultinomialNB
model = MultinomialNB(alpha=0.01)
model.fit(train_x, train_y)
return model
# KNN Classifier
def knn_classifier(train_x, train_y):
from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier()
model.fit(train_x, train_y)
return model
# Logistic Regression Classifier
def logistic_regression_classifier(train_x, train_y):
from sklearn.linear_model import LogisticRegression
model = LogisticRegression(penalty='l2')
model.fit(train_x, train_y)
return model
# Random Forest Classifier
def random_forest_classifier(train_x, train_y):
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=8)
model.fit(train_x, train_y)
return model
# Decision Tree Classifier
def decision_tree_classifier(train_x, train_y):
from sklearn import tree
model = tree.DecisionTreeClassifier()
model.fit(train_x, train_y)
return model
# GBDT(Gradient Boosting Decision Tree) Classifier
def gradient_boosting_classifier(train_x, train_y):
from sklearn.ensemble import GradientBoostingClassifier
model = GradientBoostingClassifier(n_estimators=200)
model.fit(train_x, train_y)
return model
# SVM Classifier
def svm_classifier(train_x, train_y):
from sklearn.svm import SVC
model = SVC(kernel='rbf', probability=True)
model.fit(train_x, train_y)
return model
# SVM Classifier using cross validation
def svm_cross_validation(train_x, train_y):
from sklearn.grid_search import GridSearchCV
from sklearn.svm import SVC
model = SVC(kernel='rbf', probability=True)
param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]}
grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1)
grid_search.fit(train_x, train_y)
best_parameters = grid_search.best_estimator_.get_params()
for para, val in list(best_parameters.items()):
print(para, val)
model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True)
model.fit(train_x, train_y)
return model
def read_data(data_file):
data = pd.read_csv(data_file)
train = data[:int(len(data)*0.9)]
test = data[int(len(data)*0.9):]
train_y = train.label
train_x = train.drop('label', axis=1)
test_y = test.label
test_x = test.drop('label', axis=1)
return train_x, train_y, test_x, test_y
if __name__ == '__main__':
data_file = "H:\\Research\\data\\trainCG.csv"
thresh = 0.5
model_save_file = None
model_save = {}
test_classifiers = ['NB', 'KNN', 'LR', 'RF', 'DT', 'SVM','SVMCV', 'GBDT']
classifiers = {'NB':naive_bayes_classifier,
'KNN':knn_classifier,
'LR':logistic_regression_classifier,
'RF':random_forest_classifier,
'DT':decision_tree_classifier,
'SVM':svm_classifier,
'SVMCV':svm_cross_validation,
'GBDT':gradient_boosting_classifier
}
print('reading training and testing data...')
train_x, train_y, test_x, test_y = read_data(data_file)
for classifier in test_classifiers:
print('******************* %s ********************' % classifier)
start_time = time.time()
model = classifiers[classifier](train_x, train_y)
print('training took %fs!' % (time.time() - start_time))
predict = model.predict(test_x)
if model_save_file != None:
model_save[classifier] = model
precision = metrics.precision_score(test_y, predict)
recall = metrics.recall_score(test_y, predict)
print('precision: %.2f%%, recall: %.2f%%' % (100 * precision, 100 * recall))
accuracy = metrics.accuracy_score(test_y, predict)
print('accuracy: %.2f%%' % (100 * accuracy))
if model_save_file != None:
pickle.dump(model_save, open(model_save_file, 'wb'))
来源:https://blog.csdn.net/lihaitao000/article/details/66972039


猜你喜欢
- The Only Thing We Have To Fear Is Premature Standardization原文地址:http:/
- os.path.dirname() 获取父目录os.path.basename() #获取文件名或者文件夹名python2缺省为相对路径导入
- 本文实例为大家分享了python七夕浪漫表白的具体代码,供大家参考,具体内容如下from turtle import *from time
- 基于python的Appium进行b站直播消费记录爬取之前看文章说fiddler也可以进行爬取,但尝试了一下没成功,这次选择appium进行
- 写在最前面:我在研究机器学习的过程中,给的数据集是手写数字图片被处理后的由0,1表达的txt文件,今天写一写关于图片转化为二进制txt文件的
- 什么是deferdefer用来声明一个延迟函数,把这个函数放入到一个栈上, 当外部的包含方法return之前,返回参数到调用方法之前调用,也
- return 语句就是讲结果返回到调用的地方,并把程序的控制权一起返回程序运行到所遇到的第一个return即返回(退出def块),不会再运行
- 事务处理在各种管理系统中都有着广泛的应用,比如人员管理系统,很多同步数据库操作大都需要用到事务处理。比如说,在人员管理系统中,你删除一个人员
- 存储过程采用的是select top 加 not in的方式完成,速度也算是相当快了 我测试过了百万级数据量一般查询在1秒一下,贴出来大家交
- 今天同事 明城 在项目中碰到一个 BUG,代码具体如下:<!DOCTYPE html PUBLIC "-//W3C//DTD
- 一、问题本人在使用layui使用了select按钮,点击是js脚本会异步请求后台接口获取json数据,然后layui将json数据渲染到se
- 近期,我做了一个娱乐门户的投票系统,也是被刷票搞的焦头烂额,一切可用的方法都用了。但都不是太理想,最终,琢磨出来了下面的方法,我做成了流程图
- 模块内部封装了很多实用的功能,有时在模块外部调用就需要将其导入。常见的方式有如下几种:1 . import>>> impo
- 数据修改主要以增删改差为主,这里比较几种写法在数据处理时间上的巨大差别。数据量大概是500万行级别的数据,文件大小为100M。1.iloci
- 当前需求:有group和factor两张表,一个group对应多个factor,现在想查询有效的group和对应的有效的factor,两个表
- js * 联动的实现代码如下所示:<!DOCTYPE html><html lang="en">
- 一、工厂模式(Factory Pattern)工厂模式(Factory Pattern),提供了一种实例化(创建)对象的最佳方式。在工厂模式
- 仪表盘仪表盘的效果我只能说炫酷而已,如果想要运用在实际的场景中,我其实也不清楚那个场景比较适合,但是pyecharts毕竟是炫酷可视化的利器
- 1.echo和print的区别PHP中echo和print的功能基本相同(输出),但是两者之间还是有细微差别的。echo输出后没有返回值,但
- 安装SQL Server 遇到错误提示:以前的某个程序安装已在安装计算机上创建挂起的文件操作。运行安装程序之前必须重新启动计算机!。找了半天