深入浅析Pytorch中stack()方法
作者:MoSalah 发布时间:2021-12-26 01:40:08
Torch.stack()
1. 概念
在一个新的维度上连接一个张量序列
2. 参数
tensors (sequence)需要连接的张量序列
dim (int)在第dim个维度上连接
注意输入的张量shape要完全一致,且dim必须小于len(tensors)。
3. 举例
3.1 四个shape为[3, 3]的张量
a = torch.Tensor([[1,2,3],[4,5,6],[7,8,9]])
b = torch.Tensor([[10,20,30],[40,50,60],[70,80,90]])
c = torch.Tensor([[100,200,300],[400,500,600],[700,800,900]])
d = torch.Tensor([[1000,2000,3000],[4000,5000,6000],[7000,8000,9000]])
以下面这4个张量,每个张量shape为[3, 3]。
3.1.1 dim=0的情况下,直接来看结果。
torch.stack((a,b,c,d),dim=0)
此时在第0个维度上连接,新张量的shape可以发现为[4, 3, 3],4代表在第0个维度有4项。
观察可以得知:即初始的四个张量,即a、b、c、d四个初始张量。
可以理解为新张量的第0个维度上连接a、b、c、d。
3.1.2 dim=1的情况下
torch.stack((a,b,c,d),dim=1)
此时在第1个维度上连接,新张量的shape可以发现为[3,4, 3],4代表在第1个维度有4项。
观察可以得知:
新张量[0][0]为a[0],[0][1]为b[0],[0][2]为c[0],[0][3]为d[0]
新张量[1][0]为a[1],[1][1]为b[1],[1][2]为c[1],[1][3]为d[1]
新张量[2][0]为a[2],[2][1]为b[2],[2][2]为c[2],[2][3]为d[2]
可以理解为新张量的第1个维度上连接a、b、c、d的第0个维度单位,具体地说,在新张量[i]中连接a[i]、b[i]、c[i]、d[i],即将a[i]赋给新张量[i][0]、b[i]赋给新张量[i][1]、c[i]赋给新张量[i][2]、d[i]赋给新张量[i][3]。
3.1.2 dim=2的情况下
此时在第2个维度上连接,新张量的shape可以发现为[3,3,4],4代表在第2个维度有4项。
观察可以得知:
新张量[0][0][0]为a[0][0],[0][0][1]为b[0][0],[0][0][2]为c[0][0],[0][0][3]为d[0][0]
新张量[0][1][0]为a[0][1],[0][1][1]为b[0][1],[0][1][2]为c[0][1],[0][1][3]为d[0][1]
新张量[0][2][0]为a[0][2],[0][2][1]为b[0][2],[0][2][2]为c[0][2],[0][2][3]为d[0][2]
新张量[1][0][0]为a[1][0],[1][0][1]为b[1][0],[1][0][2]为c[1][0],[1][0][3]为d[1][0]
新张量[1][1][0]为a[1][1],[1][1][1]为b[1][1],[1][1][2]为c[1][1],[1][1][3]为d[1][1]
新张量[1][2][0]为a[1][2],[1][2][1]为b[1][2],[1][2][2]为c[1][2],[1][2][3]为d[1][2]
新张量[2][0][0]为a[2][0],[2][0][1]为b[2][0],[2][0][2]为c[2][0],[2][0][3]为d[2][0]
新张量[2][1][0]为a[2][1],[2][1][1]为b[2][1],[2][1][2]为c[2][1],[2][1][3]为d[2][1]
新张量[2][2][0]为a[2][2],[2][2][1]为b[2][2],[2][2][2]为c[2][2],[2][2][3]为d[2][2]
可以理解为新张量的第2个维度上连接a、b、c、d的第1个维度的单位,具体地说,在新张量[i][j]中连接a[i][j]、b[i][j]、c[i][j]、d[i][]j。
3.1.3 总结
通过dim=0、1、2的情况,可以总结并推涨出规律:
假设有n个[x,y]的张量,当dim=z时。新张量在第z个维度上连接n个张量第z-1维度的单位,具体来说,新张量[i][i+1]..[i+z-1]中依次连接n个向量[i][i+1]..[i+z-1]。
3.2 7个shape为[5, 7, 4, 2]的张量
a1 = torch.rand([5, 7, 4, 3])
a2 = a1 + 1
a3 = a2 + 1
a4 = a3 + 1
a5 = a4 + 1
a6 = a5 + 1
a7 = a6 + 1
假设dim=3时连接
test = torch.stack((a1, a2, a3, a4, a5, a6, a7), dim=3)
7个张量在第3个维度连接后形成的新张量赋为test,test的shape为[5, 7, 4,7, 3],代表在第3个维度有7项。
随机(在新张量[0][0][0]到新张量[4][6][3]区间内)查看一个新张量第3维度上的单位:
a = test[0][1][2]
再根据总结的规律,将7个向量中的[0][1][2]连接起来,再次查看,验证了规律。
b = torch.zeros(0)
for i in (a1, a2, a3, a4, a5, a6, a7):
b = torch.cat((b, i[0][1][2]), dim=0)
4. 理解
通过shape来看,假设shape为[a, b, c... z],有n个shape相同的张量,在dim=x时连接n个张量,可以得到新张量,shape为[a, b, c, ... n, ...z],其中n所在维度即为第x个维度。
然后即可通过新张量[i][i+1]..[i+x-1]看作索引,对应的数据为n个张量[i][i+1][i+x-1]按顺序连接。
来源:https://www.cnblogs.com/tangzj/p/15526544.html


猜你喜欢
- 突然想到一个视频里面弹幕被和谐的一满屏的*号觉得很有趣,然后就想用python来试试写写看,结果还真玩出了点效果,思路是首先你得有一个脏话存
- 在做数据库修改或删除操作中,可能会导致数据错误,甚至数据库奔溃,而有效的定时备份能很好地保护数据库。本篇文章主要讲述Navicat for
- 本文实例讲述了js实现照片墙功能的方法。分享给大家供大家参考。具体实现方法如下:<!doctype html><html
- 很多开发人员在使用MySQL时经常会在部分列上进行函数计算等,导致无法走索引,在数据量大的时候,查询效率低下。针对此种情况本文从MySQL5
- 在我们学习python的过程中,学习序列是一门必修课。当我们掌握了序列过后,便会学习常用的两个排序函数sort()与sorted()。但很少
- 我就废话不多说了,大家还是直接看代码吧~import numpy as np kernel = np.array([1, 1, 1, 2])
- 目录一、图片处理(一)图片采集(二)图片装载(三)完整代码二、初始化pygame相关参数(一)设置初始化参数(二)设置为全屏显示:三、核心模
- <SCRIPT language=JavaScript> <!-- var layerTo
- 在写代码过程中我们常常可能会遇到这样一种情况,要对一个list中的每个元素做同样的操作时,两种方法方法一:循环遍历每个元素 话不多说,上代码
- 最近想研究下SQL SERVER2012 Enterprise版本的数据库,听说功能很强大。我是在win7上安装的,安装的过程很顺利,我在用
- 通过 Vue.js 的过渡系统,你可以轻松的为 DOM 节点 * 入/移除的过程添加过渡动画效果。Vue 将会在适当的时机添加/移除 CSS
- 1:mysql是我们使用最多的数据库,如果在日常中正确的对mysql数据进行备份,下面我们就来做这事,通过脚本来实现############
- 如下所示:a = [0,1,2,3,4,5,6,7,8,9]b = a[i:j] 表示复制a[i]到a[j-1],以生成新的list对象b
- 由于在遭遇到这个页面之前我们一 * 互刚好在讨论交互设计原则之类的话题,其中有一条是:包容性,即满足主体用户需求的同时,尽可能兼顾非主体用户需
- 下面是规则.你和你的对手,在同一时间做出特定的手势,必须是下面一种手势:石头,剪子,布.胜利者从下面的规则中产生,这个规则本身是个悖论.(a
- 如何在ADO中使用存储查询?对于使用参数存贮查询,我们可用下面的代码进行示例:Private cn As Ne
- php中可以使用 mb_detect_encoding() 函数来判断字符串是什么编码的。当在php中使用mb_detect_encodin
- web.config第一种方法:<?xml version="1.0" encoding="utf-8&
- 【添加事件机制】 addEventListener 和 attachEvent[W3C]addEvent
- 1 作用注意此处Tensorflow版本是2.0+。由于本人是Pytorch用户,对Tensorflow不是很熟悉,在读到用tf写的代码时就