详解TensorFlow训练网络两种方式
作者:学姐带你玩AI 发布时间:2021-06-24 00:18:23
标签:TensorFlow,训练网络
TensorFlow训练网络有两种方式,一种是基于tensor(array),另外一种是迭代器
两种方式区别是:
第一种是要加载全部数据形成一个tensor,然后调用model.fit()然后指定参数batch_size进行将所有数据进行分批训练
第二种是自己先将数据分批形成一个迭代器,然后遍历这个迭代器,分别训练每个批次的数据
方式一:通过迭代器
IMAGE_SIZE = 1000
# step1:加载数据集
(train_images, train_labels), (val_images, val_labels) = tf.keras.datasets.mnist.load_data()
# step2:将图像归一化
train_images, val_images = train_images / 255.0, val_images / 255.0
# step3:设置训练集大小
train_images = train_images[:IMAGE_SIZE]
val_images = val_images[:IMAGE_SIZE]
train_labels = train_labels[:IMAGE_SIZE]
val_labels = val_labels[:IMAGE_SIZE]
# step4:将图像的维度变为(IMAGE_SIZE,28,28,1)
train_images = tf.expand_dims(train_images, axis=3)
val_images = tf.expand_dims(val_images, axis=3)
# step5:将图像的尺寸变为(32,32)
train_images = tf.image.resize(train_images, [32, 32])
val_images = tf.image.resize(val_images, [32, 32])
# step6:将数据变为迭代器
train_loader = tf.data.Dataset.from_tensor_slices((train_images, train_labels)).batch(32)
val_loader = tf.data.Dataset.from_tensor_slices((val_images, val_labels)).batch(IMAGE_SIZE)
# step5:导入模型
model = LeNet5()
# 让模型知道输入数据的形式
model.build(input_shape=(1, 32, 32, 1))
# 结局Output Shape为 multiple
model.call(Input(shape=(32, 32, 1)))
# step6:编译模型
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
# 权重保存路径
checkpoint_path = "./weight/cp.ckpt"
# 回调函数,用户保存权重
save_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path,
save_best_only=True,
save_weights_only=True,
monitor='val_loss',
verbose=0)
EPOCHS = 11
for epoch in range(1, EPOCHS):
# 每个批次训练集误差
train_epoch_loss_avg = tf.keras.metrics.Mean()
# 每个批次训练集精度
train_epoch_accuracy = tf.keras.metrics.SparseCategoricalAccuracy()
# 每个批次验证集误差
val_epoch_loss_avg = tf.keras.metrics.Mean()
# 每个批次验证集精度
val_epoch_accuracy = tf.keras.metrics.SparseCategoricalAccuracy()
for x, y in train_loader:
history = model.fit(x,
y,
validation_data=val_loader,
callbacks=[save_callback],
verbose=0)
# 更新误差,保留上次
train_epoch_loss_avg.update_state(history.history['loss'][0])
# 更新精度,保留上次
train_epoch_accuracy.update_state(y, model(x, training=True))
val_epoch_loss_avg.update_state(history.history['val_loss'][0])
val_epoch_accuracy.update_state(next(iter(val_loader))[1], model(next(iter(val_loader))[0], training=True))
# 使用.result()计算每个批次的误差和精度结果
print("Epoch {:d}: trainLoss: {:.3f}, trainAccuracy: {:.3%} valLoss: {:.3f}, valAccuracy: {:.3%}".format(epoch,
train_epoch_loss_avg.result(),
train_epoch_accuracy.result(),
val_epoch_loss_avg.result(),
val_epoch_accuracy.result()))
方式二:适用model.fit()进行分批训练
import model_sequential
(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()
# step2:将图像归一化
train_images, test_images = train_images / 255.0, test_images / 255.0
# step3:将图像的维度变为(60000,28,28,1)
train_images = tf.expand_dims(train_images, axis=3)
test_images = tf.expand_dims(test_images, axis=3)
# step4:将图像尺寸改为(60000,32,32,1)
train_images = tf.image.resize(train_images, [32, 32])
test_images = tf.image.resize(test_images, [32, 32])
# step5:导入模型
# history = LeNet5()
history = model_sequential.LeNet()
# 让模型知道输入数据的形式
history.build(input_shape=(1, 32, 32, 1))
# history(tf.zeros([1, 32, 32, 1]))
# 结局Output Shape为 multiple
history.call(Input(shape=(32, 32, 1)))
history.summary()
# step6:编译模型
history.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
# 权重保存路径
checkpoint_path = "./weight/cp.ckpt"
# 回调函数,用户保存权重
save_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path,
save_best_only=True,
save_weights_only=True,
monitor='val_loss',
verbose=1)
# step7:训练模型
history = history.fit(train_images,
train_labels,
epochs=10,
batch_size=32,
validation_data=(test_images, test_labels),
callbacks=[save_callback])
来源:https://blog.csdn.net/m0_47256162/article/details/122179151


猜你喜欢
- 简洁版Windows10系统下,按Win+R键启动运行,输入cmd,进入命令窗口输入conda info --envs,查看conda 环境
- 六、XML展望 任何一项新技术的产生都是有其需求背景的,XML的诞生是在HTML遇到不可克服的困难之后。近年来HTML在许多复杂的Web应用
- matplotlib制作简单的动画动画即是在一段时间内快速连续的重新绘制图像的过程.matplotlib提供了方法用于处理简单动画的绘制:i
- 一、背景:在平时工作中有遇到端口检测,查看服务端特定端口是否对外开放,常用nmap,tcping,telnet等,同时也可以利用站长工具等w
- 一个post类型的接口怎么编写脚本实现1、打开网页,在fiddler上获取到接口的URL2、用Python的requests库实现impor
- PDO::beginTransactionPDO::beginTransaction 启动一个事务(PHP 5 >= 5.1.0, P
- 前言:由于使用Django框架来做网站,需要动态显示数据库内的信息,所以读取数据库必须要做,写此博文来记录。接下来分两步来做这个事,添加网页
- 使用ES做搜索引擎拉取数据的时候,如果数据量太大,通过传统的from + size的方式并不能获取所有的数据(默认最大记录数10000),因
- 前言 常用地图底图的绘制一般由Basemap或者cartopy模块完成,由于Basemap库是基于python2开发的一个模块,目前已经不开
- 本文实例讲述了Python实现的寻找前5个默尼森数算法。分享给大家供大家参考,具体如下:找前5个默尼森数。若P是素数且M也是素数,并且满足等
- 如下所示:file->settings->Editor->General->Console里面的console co
- 一、前言在写业务代码时候,有许多场景需要重试某块业务逻辑,例如网络请求、购物下单等,希望发生异常的时候多重试几次。本文分享如何利用Pytho
- 方法一:def commaSpiltList(self, listData): listData = list(listData) strs
- PyCharm 应该是大多数 python 开发者的首选 IDE,每天我们都在上面敲着熟悉的代码,写出一个又一个奇妙的功能。它是帮助用户在使
- 本文实例为大家分享了python实现简单计算器的具体代码,供大家参考,具体内容如下今天学习到python中界面设计部分,常用的几种图形化界面
- 日常运维工作中,通常是邮件报警机制,但邮件可能不被及时查看,导致问题出现得不到及时有效处理。所以想到用Python实现发短信功能,当监控到问
- 在前面已经学习了gin框架如何处理请求,解析请求,返回数据。在实际的项目当中,项目往往是以模块化来进行划分和开发的,所谓的模块化就是按照功能
- 一、环境配置需要 pillow 和 pytesseract 这两个库,pip install 安装就好了。install pillow -i
- 如何利用Image Data Type从数据库中读取图片,并在主页中显示图形?然后,写如下代码:< % @&nbs
- 1.jsvar obj=document.getElementById(selectid);obj.options.length = 0;