网络编程
位置:首页>> 网络编程>> Python编程>> python多进程控制学习小结

python多进程控制学习小结

作者:青云  发布时间:2021-08-31 00:48:57 

标签:python,多进程,控制

前言:

python多进程,经常在使用,却没有怎么系统的学习过,官网上面讲得比较细,结合自己的学习,整理记录下官网:https://docs.python.org/3/library/multiprocessing.html

multiprocessing简介

multiprocessing是python自带的多进程模块,可以大批量的生成进程,在服务器为多核CPU时效果更好,类似于threading模块。相对于多线程,多进程由于独享内存空间,更稳定安全,在运维里面做些批量操作时,多进程有更多适用的场景

multiprocessing包提供了本地和远程两种并发操作,有效的避开了使用子进程而不是全局解释锁的线程,因此,multiprocessing可以有效利用到多核处理

Process类

在multiporcessing中,通过Process类对象来批量产生进程,使用start()方法来启动这个进程

1.语法

multiprocessing.Process(group=None,target=None,name=None,args=(),kwargs={},*)

  • group: 这个参数一般为空,它只是为了兼容threading.Tread

  • target: 这个参数就是通过run()可调用对象的方法,默认为空,表示没有方法被调用

  • name: 表示进程名

  • args: 传给target调用方法的tuple(元组)参数

  • kwargs: 传给target调用方法的dict(字典)参数

2.Process类的方法及对象

run()
该方法是进程的运行过程,可以在子类中重写此方法,一般也很少去重构

start()
启动进程,每个进程对象都必须被该方法调用

join([timeout])
等待进程终止,再往下执行,可以设置超时时间

name
可以获取进程名字,多个进程也可以是相同的名字

is_alive()
返回进程是否还存活,True or False,进程存活是指start()开始到子进程终止

daemon
守护进程的标记,一个布尔值,在start()之后设置该值,表示是否后台运行
注意:如果设置了后台运行,那么后台程序不运行再创建子进程

pid
可以获取进程ID

exitcode
子进程退出时的值,如果进程还没有终止,值将是None,如果是负值,表示子进程被终止

terminate()
终止进程,如果是Windows,则使用terminateprocess(),该方法对已经退出和结束的进程,将不会执行

以下为一个简单的例子:


#-*- coding:utf8 -*-
import multiprocessing
import time

def work(x):
 time.sleep(1)
 print time.ctime(),'这是子进程[{0}]...'.format(x)

if __name__ == '__main__':
 for i in range(5):
   p = multiprocessing.Process(target=work,args=(i,))
   print '启动进程数:{0}'.format(i)
   p.start()
   p.deamon = True

python多进程控制学习小结

当然也可以显示每个进程的ID


#-*- coding:utf8 -*-
import multiprocessing
import time
import os

def work(x):
 time.sleep(1)
 ppid = os.getppid()
 pid = os.getpid()
 print time.ctime(),'这是子进程[{0},父进程:{1},子进程:{2}]...'.format(x,ppid,pid)

if __name__ == '__main__':
 for i in range(5):
   p = multiprocessing.Process(target=work,args=(i,))
   print '启动进程数:{0}'.format(i)
   p.start()
   p.deamon = True

python多进程控制学习小结

但在实际使用的过程中,并不只是并发完就可以了,比如,有30个任务,由于服务器资源有限,每次并发5个任务,这里还涉及到30个任务怎么获取的问题,另外并发的进程任务执行时间很难保证一致,尤其是需要时间的任务,可能并发5个任务,有3个已经执行完了,2个还需要很长时间执行,总不能等到这两个进程执行完了,再继续执行后面的任务,因此进程控制就在此有了使用场景,可以利用Process的方法和一些multiprocessing的包,类等结合使用

进程控制及通信常用类

一、Queue类

类似于python自带的Queue.Queue,主要用在比较小的队列上面

语法:

multiprocessing.Queue([maxsize])

类方法:

qsize()
返回队列的大致大小,因为多进程或者多线程一直在消耗队列,因此该数据不一定正确

empty()
判断队列是否为空,如果是,则返回True,否则False

full()
判断队列是否已满,如果是,则返回True,否则False

put(obj[, block[, timeout]])
将对象放入队列,可选参数block为True,timeout为None

get()
从队列取出对象


#-*- coding:utf8 -*-
from multiprocessing import Process, Queue

def f(q):
 q.put([42,None,'hi'])

if __name__ == '__main__':
 q = Queue()
 p = Process(target=f, args=(q,))
 p.start()
 print q.get() #打印内容: [42,None,'hi']
 p.join()

二、Pipe类

pipe()函数返回一对对象的连接,可以为进程间传输消息,在打印一些日志、进程控制上面有一些用处,Pip()对象返回两个对象connection,代表两个通道,每个connection对象都有send()和recv()方法,需要注意的是两个或以上的进程同时读取或者写入同一管道,可能会导致数据混乱,测试了下,是直接覆盖了。另外,返回的两个connection,如果一个是send()数据,那么另外一个就只能recv()接收数据了


#-*- coding:utf8 -*-
from multiprocessing import Process, Pipe
import time
def f(conn,i):
 print '[{0}]已经执行到子进程:{1}'.format(time.ctime(),i)
 time.sleep(1)
 w = "[{0}]hi,this is :{1}".format(time.ctime(),i)
 conn.send(w)
 conn.close()

if __name__ == '__main__':
 reader = []
 parent_conn, child_conn = Pipe()
 for i in range(4):
   p = Process(target=f, args=(child_conn,i))
   p.start()
   reader.append(parent_conn)
   p.deamon=True

# 等待所有子进程跑完
 time.sleep(3)
 print '\n[{0}]下面打印child_conn向parent_conn传输的信息:'.format(time.ctime())
 for i in reader:
   print i.recv()

输出为:

python多进程控制学习小结

三、Value,Array

在进行并发编程时,应尽量避免使用共享状态,因为多进程同时修改数据会导致数据破坏。但如果确实需要在多进程间共享数据,multiprocessing也提供了方法Value、Array


from multiprocessing import Process, Value, Array

def f(n, a):
 n.value = 3.1415927
 for i in range(len(a)):
   a[i] = -a[i]

if __name__ == '__main__':
 num = Value('d',0.0)
 arr = Array('i', range(10))

p = Process(target=f, args=(num, arr))
 p.start()
 p.join()

print num.value
 print arr[:]

*print
3.1415927
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]*

四、Manager进程管理模块

Manager类管理进程使用得较多,它返回对象可以操控子进程,并且支持很多类型的操作,如: list, dict, Namespace、lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Barrier, Queue, Value, Array,因此使用Manager基本上就够了


from multiprocessing import Process, Manager

def f(d, l):
 d[1] = '1'
 d['2'] = 2
 d[0.25] = None
 l.reverse()

if __name__ == '__main__':
 with Manager() as manager:
   d = manager.dict()
   l = manager.list(range(10))

p = Process(target=f, args=(d, l))
   p.start()
   p.join() #等待进程结束后往下执行
   print d,'\n',l

输出:
{0.25: None, 1: '1', '2': 2}
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

可以看到,跟共享数据一样的效果,大部分管理进程的方法都集成到了Manager()模块了

五、对多进程控制的应用实例


 #-*- coding:utf8 -*-
 from multiprocessing import Process, Queue
 import time

def work(pname,q):
   time.sleep(1)
   print_some = "{0}|this is process: {1}".format(time.ctime(),pname)
   print print_some
   q.put(pname)

if __name__ == '__main__':
   p_manag_num = 2 # 进程并发控制数量2
   # 并发的进程名
   q_process = ['process_1','process_2','process_3','process_4','process_5']
   q_a = Queue() # 将进程名放入队列
   q_b = Queue() # 将q_a的进程名放往q_b进程,由子进程完成

for i in q_process:
     q_a.put(i)

p_list = [] # 完成的进程队列
   while not q_a.empty():
     if len(p_list) <= 2:
       pname=q_a.get()
       p = Process(target=work, args=(pname,q_b))
       p.start()
       p_list.append(p)
       print pname

for p in p_list:
       if not p.is_alive():
         p_list.remove(p)

# 等待5秒,预估执行完后看队列通信信息
   # 当然也可以循环判断队列里面的进程是否执行完成
   time.sleep(5)
   print '打印p_b队列:'
   while not q_b.empty():
     print q_b.get()

执行结果:

python多进程控制学习小结

来源:https://segmentfault.com/a/1190000016855803

0
投稿

猜你喜欢

手机版 网络编程 asp之家 www.aspxhome.com