Pytorch 实现focal_loss 多类别和二分类示例
作者:Kingslayer_ 发布时间:2021-09-16 17:53:36
标签:Pytorch,focal,loss,多类别,二分类
我就废话不多说了,直接上代码吧!
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
# 支持多分类和二分类
class FocalLoss(nn.Module):
"""
This is a implementation of Focal Loss with smooth label cross entropy supported which is proposed in
'Focal Loss for Dense Object Detection. (https://arxiv.org/abs/1708.02002)'
Focal_Loss= -1*alpha*(1-pt)^gamma*log(pt)
:param num_class:
:param alpha: (tensor) 3D or 4D the scalar factor for this criterion
:param gamma: (float,double) gamma > 0 reduces the relative loss for well-classified examples (p>0.5) putting more
focus on hard misclassified example
:param smooth: (float,double) smooth value when cross entropy
:param balance_index: (int) balance class index, should be specific when alpha is float
:param size_average: (bool, optional) By default, the losses are averaged over each loss element in the batch.
"""
def __init__(self, num_class, alpha=None, gamma=2, balance_index=-1, smooth=None, size_average=True):
super(FocalLoss, self).__init__()
self.num_class = num_class
self.alpha = alpha
self.gamma = gamma
self.smooth = smooth
self.size_average = size_average
if self.alpha is None:
self.alpha = torch.ones(self.num_class, 1)
elif isinstance(self.alpha, (list, np.ndarray)):
assert len(self.alpha) == self.num_class
self.alpha = torch.FloatTensor(alpha).view(self.num_class, 1)
self.alpha = self.alpha / self.alpha.sum()
elif isinstance(self.alpha, float):
alpha = torch.ones(self.num_class, 1)
alpha = alpha * (1 - self.alpha)
alpha[balance_index] = self.alpha
self.alpha = alpha
else:
raise TypeError('Not support alpha type')
if self.smooth is not None:
if self.smooth < 0 or self.smooth > 1.0:
raise ValueError('smooth value should be in [0,1]')
def forward(self, input, target):
logit = F.softmax(input, dim=1)
if logit.dim() > 2:
# N,C,d1,d2 -> N,C,m (m=d1*d2*...)
logit = logit.view(logit.size(0), logit.size(1), -1)
logit = logit.permute(0, 2, 1).contiguous()
logit = logit.view(-1, logit.size(-1))
target = target.view(-1, 1)
# N = input.size(0)
# alpha = torch.ones(N, self.num_class)
# alpha = alpha * (1 - self.alpha)
# alpha = alpha.scatter_(1, target.long(), self.alpha)
epsilon = 1e-10
alpha = self.alpha
if alpha.device != input.device:
alpha = alpha.to(input.device)
idx = target.cpu().long()
one_hot_key = torch.FloatTensor(target.size(0), self.num_class).zero_()
one_hot_key = one_hot_key.scatter_(1, idx, 1)
if one_hot_key.device != logit.device:
one_hot_key = one_hot_key.to(logit.device)
if self.smooth:
one_hot_key = torch.clamp(
one_hot_key, self.smooth, 1.0 - self.smooth)
pt = (one_hot_key * logit).sum(1) + epsilon
logpt = pt.log()
gamma = self.gamma
alpha = alpha[idx]
loss = -1 * alpha * torch.pow((1 - pt), gamma) * logpt
if self.size_average:
loss = loss.mean()
else:
loss = loss.sum()
return loss
class BCEFocalLoss(torch.nn.Module):
"""
二分类的Focalloss alpha 固定
"""
def __init__(self, gamma=2, alpha=0.25, reduction='elementwise_mean'):
super().__init__()
self.gamma = gamma
self.alpha = alpha
self.reduction = reduction
def forward(self, _input, target):
pt = torch.sigmoid(_input)
alpha = self.alpha
loss = - alpha * (1 - pt) ** self.gamma * target * torch.log(pt) - \
(1 - alpha) * pt ** self.gamma * (1 - target) * torch.log(1 - pt)
if self.reduction == 'elementwise_mean':
loss = torch.mean(loss)
elif self.reduction == 'sum':
loss = torch.sum(loss)
return loss
来源:https://blog.csdn.net/qq_33278884/article/details/91572173
0
投稿
猜你喜欢
- 大家都知道很多控件是没有clicked信号的,我在网上找了很多终于总结出2个方法来实现类似需求,比如给QLineEdit添加clicked信
- Laravel通过传统的登录表单已经让用户认证变得很简单,但是API怎么办?API通常使用token进行认证并且在请求之间不维护sessio
- JOSN字符串转换为自定义类实例对象有时候我们有这种需求就是把一个JSON字符串转换为一个具体的Python类的实例,比如你接收到这样一个J
- 1. Neovim是什么在此之前,我一直都是使用VSCODE或者WEB STORM编辑器的. 他们确实好用方便. 直到我得了腱鞘炎之后. 不
- 看代码吧~import pymongofrom dateutil import parserdateStr = "2019-05-
- 前言:我们想要在爬虫中使用xpath、beautifulsoup、正则表达式,css选择器等来提取想要的数据,但是因为scrapy是一个比较
- 1:php地址 http://127.0.0.6/?c=json2:java 输出的结果是[{"i
- 最近工作需要把单片机读取的传感器电压数据实时在PC上通过曲线显示出来,刚好在看python, 就试着用了python 与uart端口通讯,并
- sklearn的cross_validation包中含有将数据集按照一定的比例,随机划分为训练集和测试集的函数train_test_spli
- 通常我们在制作上图的时候,会分别给四个div加上不同的css属性,来实现中间间隔。但我们更希望的是不需要对html标签做标识,直接能通过cs
- 以前看过几个JS代码格式的,自己也来写了一个,呵呵,优点是可以处理超长的 JS 而不会死机.........IE Only运行代码框<
- 返回函数所谓返回函数,顾名思义,就是把函数作为返回值。高阶函数除了可以将函数作为参数之外,还可以将函数作为结果进行返回。下面来实现一个可变参
- 一.修改/etc/my.cnf文件default-character-set=utf8[mysqld]datadir= ar b/mysql
- 前言bufio包实现了带缓冲的I/O,它封装了io.Reader和io.Writer对象,然后创建了另外一种对象(Reader或Writer
- 我们都知道 vue 中可以使用 modal 来实现 input 内容数据的双向绑定。小程序好像没有提供相应的方法支持,就需要我们自己写了。原
- SQL Server查询速度慢的原因有很,常见的有以下几种:1、没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷)2、I/
- 似乎讨论分页的人很少,难道大家都沉迷于limit m,n?在有索引的情况下,limit m,n速度足够,可是在复杂条件搜索时,where s
- 本文实例为大家分享了vue文件树组件的实现方法,供大家参考,具体内容如下本文主要是分析vue官方仓库里的文件树组件[vue github]d
- 相比于time模块,datetime模块的接口则更直观、更容易调用。今天就来讲讲datetime模块。 datetime模块定义了两个常量:
- 本文实例为大家分享了Python smtplib发送邮件功能的具体代码,供大家参考,具体内容如下解决之前版本的问题,下面为最新版#!/usr