网络编程
位置:首页>> 网络编程>> Python编程>> numpy基础教程之np.linalg

numpy基础教程之np.linalg

作者:Inside_Zhang  发布时间:2021-11-10 14:36:43 

标签:numpy,基础,np.linalg

前言

numpy.linalg模块包含线性代数的函数。使用这个模块,可以计算逆矩阵、求特征值、解线性方程组以及求解行列式等。本文讲给大家介绍关于numpy基础之 np.linalg的相关内容,下面话不多说了,来一起看看详细的介绍吧

(1)np.linalg.inv():矩阵求逆

(2)np.linalg.det():矩阵求行列式(标量)

np.linalg.norm

顾名思义,linalg=linear+algebra linalg=linear+algebra\mathrm{linalg=linear + algebra},norm norm\mathrm{norm}则表示范数,首先需要注意的是范数是对向量(或者矩阵)的度量,是一个标量(scalar):

首先help(np.linalg.norm)查看其文档:

norm(x, ord=None, axis=None, keepdims=False)1

这里我们只对常用设置进行说明,x x\mathrm{x}表示要度量的向量,ord ord\mathrm{ord}表示范数的种类,

numpy基础教程之np.linalg 


>>> x = np.array([3, 4])
>>> np.linalg.norm(x)
5.
>>> np.linalg.norm(x, ord=2)
5.
>>> np.linalg.norm(x, ord=1)
7.
>>> np.linalg.norm(x, ord=np.inf)
4123456789

范数理论的一个小推论告诉我们:ℓ 1 ≥ℓ 2 ≥ℓ ∞  ℓ1≥ℓ2≥ℓ∞

来源:https://blog.csdn.net/lanchunhui/article/details/51004387

0
投稿

猜你喜欢

手机版 网络编程 asp之家 www.aspxhome.com