40个你可能不知道的Python技巧附代码
作者:tychyg 发布时间:2021-09-26 13:56:58
1、拆箱
>>> a, b, c = 1, 2, 3
>>> a, b, c
(1, 2, 3)
>>> a, b, c = [1, 2, 3]
>>> a, b, c
(1, 2, 3)
>>> a, b, c = (2 * i + 1 for i in range(3))
>>> a, b, c
(1, 3, 5)
>>> a, (b, c), d = [1, (2, 3), 4]
>>> a
1
>>> b
2
>>> c
3
>>> d
4
2、使用拆箱进行变量交换
>>> a, b = 1, 2
>>> a, b = b, a
>>> a, b
(2, 1)
3、扩展的拆箱(Python 3支持)
>>> a, *b, c = [1, 2, 3, 4, 5]
>>> a
1
>>> b
[2, 3, 4]
>>> c
5
4、负数索引
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[-1]
10
>>> a[-3]
8
5、列表切片(a[start:end])
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[2:8]
[2, 3, 4, 5, 6, 7]
6、负数索引的列表切片
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[-4:-2]
[7, 8]
7、带步数的列表切片(a[start:end:step])
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[::2]
[0, 2, 4, 6, 8, 10]
>>> a[::3]
[0, 3, 6, 9]
>>> a[2:8:2]
[2, 4, 6]
8、负数步数的列表切片
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[::-1]
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
>>> a[::-2]
[10, 8, 6, 4, 2, 0]
9、列表切片赋值
>>> a = [1, 2, 3, 4, 5]
>>> a[2:3] = [0, 0]
>>> a
[1, 2, 0, 0, 4, 5]
>>> a[1:1] = [8, 9]
>>> a
[1, 8, 9, 2, 0, 0, 4, 5]
>>> a[1:-1] = []
>>> a
[1, 5]
10、切片命名(slice(start, end, step))
>>> a = [0, 1, 2, 3, 4, 5]
>>> LASTTHREE = slice(-3, None)
>>> LASTTHREE
slice(-3, None, None)
>>> a[LASTTHREE]
[3, 4, 5]
11、遍历列表索引和值(enumerate)
>>> a = ["Hello", "world", "!"]
>>> for i, x in enumerate(a):
... print "{}: {}".format(i, x)
...
0: Hello
1: world
2: !
12、遍历字典的KEY和VALUE(dict.iteritems)
>>> m = {"a": 1, "b": 2, "c": 3, "d": 4}
>>> for k, v in m.iteritems():
... print "{}: {}".format(k, v)
...
a: 1
c: 3
b: 2
d: 4
# 注意:Python 3中要使用dict.items
13、压缩 & 解压列表和可遍历对象
>>> a = [1, 2, 3]
>>> b = ["a", "b", "c"]
>>> z = zip(a, b)
>>> z
[(1, "a"), (2, "b"), (3, "c")]
>>> zip(*z)
[(1, 2, 3), ("a", "b", "c")]
14、使用zip分组相邻列表项
>>> a = [1, 2, 3, 4, 5, 6]
>>> # Using iterators
>>> group_adjacent = lambda a, k: zip(*([iter(a)] * k))
>>> group_adjacent(a, 3)
[(1, 2, 3), (4, 5, 6)]
>>> group_adjacent(a, 2)
[(1, 2), (3, 4), (5, 6)]
>>> group_adjacent(a, 1)
[(1,), (2,), (3,), (4,), (5,), (6,)]
>>> # Using slices
>>> from itertools import islice
>>> group_adjacent = lambda a, k: zip(*(islice(a, i, None, k) for i in range(k)))
>>> group_adjacent(a, 3)
[(1, 2, 3), (4, 5, 6)]
>>> group_adjacent(a, 2)
[(1, 2), (3, 4), (5, 6)]
>>> group_adjacent(a, 1)
[(1,), (2,), (3,), (4,), (5,), (6,)]
15、使用zip & iterators实现推拉窗(n-grams)
>>> from itertools import islice
>>> def n_grams(a, n):
... z = (islice(a, i, None) for i in range(n))
... return zip(*z)
...
>>> a = [1, 2, 3, 4, 5, 6]
>>> n_grams(a, 3)
[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]
>>> n_grams(a, 2)
[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]
>>> n_grams(a, 4)
[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)]
16、使用zip反相字典对象
>>> m = {"a": 1, "b": 2, "c": 3, "d": 4}
>>> m.items()
[("a", 1), ("c", 3), ("b", 2), ("d", 4)]
>>> zip(m.values(), m.keys())
[(1, "a"), (3, "c"), (2, "b"), (4, "d")]
>>> mi = dict(zip(m.values(), m.keys()))
>>> mi
{1: "a", 2: "b", 3: "c", 4: "d"}
17、合并列表
>>> a = [[1, 2], [3, 4], [5, 6]]
>>> list(itertools.chain.from_iterable(a))
[1, 2, 3, 4, 5, 6]
>>> sum(a, [])
[1, 2, 3, 4, 5, 6]
>>> [x for l in a for x in l]
[1, 2, 3, 4, 5, 6]
>>> a = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
>>> [x for l1 in a for l2 in l1 for x in l2]
[1, 2, 3, 4, 5, 6, 7, 8]
>>> a = [1, 2, [3, 4], [[5, 6], [7, 8]]]
>>> flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]
>>> flatten(a)
[1, 2, 3, 4, 5, 6, 7, 8]
Note: according to Python"s documentation on sum, itertools.chain.from_iterable is the preferred method for this.
18、生成器
>>> g = (x ** 2 for x in xrange(10))
>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> sum(x ** 3 for x in xrange(10))
2025
>>> sum(x ** 3 for x in xrange(10) if x % 3 == 1)
408
19、字典解析
>>> m = {x: x ** 2 for x in range(5)}
>>> m
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}
>>> m = {x: "A" + str(x) for x in range(10)}
>>> m
{0: "A0", 1: "A1", 2: "A2", 3: "A3", 4: "A4", 5: "A5", 6: "A6", 7: "A7", 8: "A8", 9: "A9"}
20、使用字典解析反相字典对象
>>> m = {"a": 1, "b": 2, "c": 3, "d": 4}
>>> m
{"d": 4, "a": 1, "b": 2, "c": 3}
>>> {v: k for k, v in m.items()}
{1: "a", 2: "b", 3: "c", 4: "d"}
21、命名的tuples(collections.namedtuple)
>>> Point = collections.namedtuple("Point", ["x", "y"])
>>> p = Point(x=4.0, y=2.0)
>>> p
Point(x=4.0, y=2.0)
>>> p.x
4.0
>>> p.y
2.0
22、继承命名tuples
>>> class Point(collections.namedtuple("PointBase", ["x", "y"])):
... __slots__ = ()
... def __add__(self, other):
... return Point(x=self.x + other.x, y=self.y + other.y)
...
>>> p = Point(x=4.0, y=2.0)
>>> q = Point(x=2.0, y=3.0)
>>> p + q
Point(x=6.0, y=5.0)
23、Set & Set运算
>>> A = {1, 2, 3, 3}
>>> A
set([1, 2, 3])
>>> B = {3, 4, 5, 6, 7}
>>> B
set([3, 4, 5, 6, 7])
>>> A | B
set([1, 2, 3, 4, 5, 6, 7])
>>> A & B
set([3])
>>> A - B
set([1, 2])
>>> B - A
set([4, 5, 6, 7])
>>> A ^ B
set([1, 2, 4, 5, 6, 7])
>>> (A ^ B) == ((A - B) | (B - A))
True
24、Multisets运算(collections.Counter)
>>> A = collections.Counter([1, 2, 2])
>>> B = collections.Counter([2, 2, 3])
>>> A
Counter({2: 2, 1: 1})
>>> B
Counter({2: 2, 3: 1})
>>> A | B
Counter({2: 2, 1: 1, 3: 1})
>>> A & B
Counter({2: 2})
>>> A + B
Counter({2: 4, 1: 1, 3: 1})
>>> A - B
Counter({1: 1})
>>> B - A
Counter({3: 1})
25、列表中出现最多的元素(collections.Counter)
>>> A = collections.Counter([1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7])
>>> A
Counter({3: 4, 1: 2, 2: 2, 4: 1, 5: 1, 6: 1, 7: 1})
>>> A.most_common(1)
[(3, 4)]
>>> A.most_common(3)
[(3, 4), (1, 2), (2, 2)]
26、双向队列(collections.deque)
>>> Q = collections.deque()
>>> Q.append(1)
>>> Q.appendleft(2)
>>> Q.extend([3, 4])
>>> Q.extendleft([5, 6])
>>> Q
deque([6, 5, 2, 1, 3, 4])
>>> Q.pop()
4
>>> Q.popleft()
6
>>> Q
deque([5, 2, 1, 3])
>>> Q.rotate(3)
>>> Q
deque([2, 1, 3, 5])
>>> Q.rotate(-3)
>>> Q
deque([5, 2, 1, 3])
27、限制长度的双向队列(collections.deque)
>>> last_three = collections.deque(maxlen=3)
>>> for i in xrange(10):
... last_three.append(i)
... print ", ".join(str(x) for x in last_three)
...
0
0, 1
0, 1, 2
1, 2, 3
2, 3, 4
3, 4, 5
4, 5, 6
5, 6, 7
6, 7, 8
7, 8, 9
28、排序字典(collections.OrderedDict)
>>> m = dict((str(x), x) for x in range(10))
>>> print ", ".join(m.keys())
1, 0, 3, 2, 5, 4, 7, 6, 9, 8
>>> m = collections.OrderedDict((str(x), x) for x in range(10))
>>> print ", ".join(m.keys())
0, 1, 2, 3, 4, 5, 6, 7, 8, 9
>>> m = collections.OrderedDict((str(x), x) for x in range(10, 0, -1))
>>> print ", ".join(m.keys())
10, 9, 8, 7, 6, 5, 4, 3, 2, 1
29、默认字典(collections.defaultdict)
>>> m = dict()
>>> m["a"]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: "a"
>>>
>>> m = collections.defaultdict(int)
>>> m["a"]
0
>>> m["b"]
0
>>> m = collections.defaultdict(str)
>>> m["a"]
""
>>> m["b"] += "a"
>>> m["b"]
"a"
>>> m = collections.defaultdict(lambda: "[default value]")
>>> m["a"]
"[default value]"
>>> m["b"]
"[default value]"
30、使用defaultdict代表tree
>>> import json
>>> tree = lambda: collections.defaultdict(tree)
>>> root = tree()
>>> root["menu"]["id"] = "file"
>>> root["menu"]["value"] = "File"
>>> root["menu"]["menuitems"]["new"]["value"] = "New"
>>> root["menu"]["menuitems"]["new"]["onclick"] = "new();"
>>> root["menu"]["menuitems"]["open"]["value"] = "Open"
>>> root["menu"]["menuitems"]["open"]["onclick"] = "open();"
>>> root["menu"]["menuitems"]["close"]["value"] = "Close"
>>> root["menu"]["menuitems"]["close"]["onclick"] = "close();"
>>> print json.dumps(root, sort_keys=True, indent=4, separators=(",", ": "))
{
"menu": {
"id": "file",
"menuitems": {
"close": {
"onclick": "close();",
"value": "Close"
},
"new": {
"onclick": "new();",
"value": "New"
},
"open": {
"onclick": "open();",
"value": "Open"
}
},
"value": "File"
}
}
# 查看更多:https://gist.github.com/hrldcpr/2012250
31、映射对象到唯一的计数数字(collections.defaultdict)
>>> import itertools, collections
>>> value_to_numeric_map = collections.defaultdict(itertools.count().next)
>>> value_to_numeric_map["a"]
0
>>> value_to_numeric_map["b"]
1
>>> value_to_numeric_map["c"]
2
>>> value_to_numeric_map["a"]
0
>>> value_to_numeric_map["b"]
1
32、最大 & 最小元素(heapq.nlargest and heapq.nsmallest)
>>> a = [random.randint(0, 100) for __ in xrange(100)]
>>> heapq.nsmallest(5, a)
[3, 3, 5, 6, 8]
>>> heapq.nlargest(5, a)
[100, 100, 99, 98, 98]
33、笛卡尔积(itertools.product)
>>> for p in itertools.product([1, 2, 3], [4, 5]):
(1, 4)
(1, 5)
(2, 4)
(2, 5)
(3, 4)
(3, 5)
>>> for p in itertools.product([0, 1], repeat=4):
... print "".join(str(x) for x in p)
...
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
34、组合(itertools.combinations and itertools.combinations_with_replacement)
>>> for c in itertools.combinations([1, 2, 3, 4, 5], 3):
... print "".join(str(x) for x in c)
...
123
124
125
134
135
145
234
235
245
345
>>> for c in itertools.combinations_with_replacement([1, 2, 3], 2):
... print "".join(str(x) for x in c)
...
11
12
13
22
23
33
35、排列(itertools.permutations)
>>> for p in itertools.permutations([1, 2, 3, 4]):
... print "".join(str(x) for x in p)
...
1234
1243
1324
1342
1423
1432
2134
2143
2314
2341
2413
2431
3124
3142
3214
3241
3412
3421
4123
4132
4213
4231
4312
4321
36、链接可遍历对象(itertools.chain)
>>> a = [1, 2, 3, 4]
>>> for p in itertools.chain(itertools.combinations(a, 2), itertools.combinations(a, 3)):
... print p
...
(1, 2)
(1, 3)
(1, 4)
(2, 3)
(2, 4)
(3, 4)
(1, 2, 3)
(1, 2, 4)
(1, 3, 4)
(2, 3, 4)
>>> for subset in itertools.chain.from_iterable(itertools.combinations(a, n) for n in range(len(a) + 1))
... print subset
...
()
(1,)
(2,)
(3,)
(4,)
(1, 2)
(1, 3)
(1, 4)
(2, 3)
(2, 4)
(3, 4)
(1, 2, 3)
(1, 2, 4)
(1, 3, 4)
(2, 3, 4)
(1, 2, 3, 4)
37、根据给定的KEY分组(itertools.groupby)
>>> from operator import itemgetter
>>> import itertools
>>> with open("contactlenses.csv", "r") as infile:
... data = [line.strip().split(",") for line in infile]
...
>>> data = data[1:]
>>> def print_data(rows):
... print " ".join(" ".join("{: <16}".format(s) for s in row) for row in rows)
...
>>> print_data(data)
young myope no reduced none
young myope no normal soft
young myope yes reduced none
young myope yes normal hard
young hypermetrope no reduced none
young hypermetrope no normal soft
young hypermetrope yes reduced none
young hypermetrope yes normal hard
pre-presbyopic myope no reduced none
pre-presbyopic myope no normal soft
pre-presbyopic myope yes reduced none
pre-presbyopic myope yes normal hard
pre-presbyopic hypermetrope no reduced none
pre-presbyopic hypermetrope no normal soft
pre-presbyopic hypermetrope yes reduced none
pre-presbyopic hypermetrope yes normal none
presbyopic myope no reduced none
presbyopic myope no normal none
presbyopic myope yes reduced none
presbyopic myope yes normal hard
presbyopic hypermetrope no reduced none
presbyopic hypermetrope no normal soft
presbyopic hypermetrope yes reduced none
presbyopic hypermetrope yes normal none
>>> data.sort(key=itemgetter(-1))
>>> for value, group in itertools.groupby(data, lambda r: r[-1]):
... print "-----------"
... print "Group: " + value
... print_data(group)
...
-----------
Group: hard
young myope yes normal hard
young hypermetrope yes normal hard
pre-presbyopic myope yes normal hard
presbyopic myope yes normal hard
-----------
Group: none
young myope no reduced none
young myope yes reduced none
young hypermetrope no reduced none
young hypermetrope yes reduced none
pre-presbyopic myope no reduced none
pre-presbyopic myope yes reduced none
pre-presbyopic hypermetrope no reduced none
pre-presbyopic hypermetrope yes reduced none
pre-presbyopic hypermetrope yes normal none
presbyopic myope no reduced none
presbyopic myope no normal none
presbyopic myope yes reduced none
presbyopic hypermetrope no reduced none
presbyopic hypermetrope yes reduced none
presbyopic hypermetrope yes normal none
-----------
Group: soft
young myope no normal soft
young hypermetrope no normal soft
pre-presbyopic myope no normal soft
pre-presbyopic hypermetrope no normal soft
presbyopic hypermetrope no normal soft
38、在任意目录启动HTTP服务
python -m SimpleHTTPServer 5000
Serving HTTP on 0.0.0.0 port 5000 ...
39、Python之禅
>>> import this
The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren"t special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you"re Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it"s a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let"s do more of those!
40、使用C风格的大括号代替Python缩进来表示作用域
>>> from __future__ import braces
来源:https://www.cnblogs.com/tychyg/p/5312974.html


猜你喜欢
- 本文介绍了 setuptools 框架的内容,它是 PEAK 的一个副项目,它提供了比 distutils 更加简单的包管理和发行功能。开始
- Python中核心的数据类型有哪些?变量(数字、字符串、元组、列表、字典)什么是数据的不可变性?哪些数据类型具有不可变性数据的不可变是指数据
- 面试题:索引是什么?索引的优点?索引的缺点?在建立索引的时候都有哪些需要考虑的因素呢?为数据表建立索引的原则有哪些?什么是索引覆盖?非聚簇索
- 其实网上已经有很多这样的类了,不过出于练手的目的还是自己仿照着写了一个。下面的代码放在一个名为UploadFile.class.php文件内
- 三种遍历列表里面序号和值的方法:最近学习python这门语言,感觉到其对自己的工作效率有很大的提升,特在情人节这一天写下了这篇博客,下面废话
- 本文实例讲述了Python3读取UTF-8文件及统计文件行数的方法。分享给大家供大家参考。具体实现方法如下:'''&
- SQL Server 获取数据的总记录数,有两种方式:1.先分页获取数据,然后再查询一遍数据库获取到总数量2.使用count(1) over
- 前言在开始本文之前,首先要知道Python中对象包含的三个基本要素,分别是:id(身份标识)、python type()(数据类型)和val
- 本文实例讲述了朴素贝叶斯分类算法原理与Python实现与使用方法。分享给大家供大家参考,具体如下:朴素贝叶斯分类算法1、朴素贝叶斯分类算法原
- 依赖模块xlwt下载:pip install xlwt后台模块view.py# 导出Excel文件def export_excel(requ
- 1.进入mysql/bin目录下输入mysqladmin processlist; 2.启动mysql,输入show processlist
- 关于Pytorch的MNIST数据集的预处理详解MNIST的准确率达到99.7%用于MNIST的卷积神经网络(CNN)的实现,具有各种技术,
- 1、目前来看,百付宝仅仅只是C2C的一个支付后台。他的内容只集中于“钱和订单”两个环节,没有其他干扰信息。2、百付宝的界面表现很简单。因为简
- 同一台服务器上部署多个项目时,项目可能使用不同版本的django或者其它不同的python库,这种情况下可以使用virtualenv来创建独
- 环境: python 2.7 + win10工具:fiddler postman 安卓模拟器首先,打开fiddler,fiddler作为ht
- 业务场景:关联不同数据库中的表的查询比如说,要关联的表是:机器A上的数据库A中的表A && 机器B上的数据库B中的表B。这种
- 本文实例讲述了Django框架使用富文本编辑器Uedit的方法。分享给大家供大家参考,具体如下:Uedit是百度一款非常好用的富文本编辑器一
- 本文实例讲述了Python实现基于C/S架构的聊天室功能。分享给大家供大家参考,具体如下:一、课程介绍1.简介本次项目课是实现简单聊天室程序
- DQLDQL:data Query language 数据查询语言格式:select[distinct] 字段1,字段2 from 表名 w
- 笔者在网上找了很多关于VSCODE配置Go语言的教程,但是由于版本等种种问题,最终都已失败告终。无奈只能在官方文档上寻求帮助,现在终于可以了