网络编程
位置:首页>> 网络编程>> Python编程>> Python方差特征过滤的实例分析

Python方差特征过滤的实例分析

作者:小妮浅浅  发布时间:2021-08-11 01:12:56 

标签:Python,方差特征,过滤

说明

1、通过特征本身的方差来筛选特征。特征的方差越小,特征的变化越不明显。

2、变化越不明显的特征对我们区分标签没有太大作用,因此应该消除这些特征。

实例


def variance_demo():
   """
   过滤低方差特征
   :return:
   """
   # 1. 获取数据
   data = pd.read_csv('factor_returns.csv')
   data = data.iloc[:, 1:-2]
   print('data:\n', data)

# 2. 实例化一个转换器类
   transfer = VarianceThreshold(threshold=10)

# 3. 调用fit_transform()
   data_new = transfer.fit_transform(data)
   print('data_new:\n', data_new, data_new.shape)

return None

知识点扩充:

方差过滤法

VarianceThreshold 是特征选择的一个简单基本方法,其原理在于–底方差的特征的预测效果往往不好。而VarianceThreshold会移除所有那些方差不满足一些阈值的特征。默认情况下,它将会移除所有的零方差特征,即那些在所有的样本上的取值均不变的特征。

sklearn中的VarianceThreshold类中重要参数 threshold(方差的阈值),表示删除所有方差小于threshold的特征 #不填默认为0——删除所有记录相同的特征。


import pandas as pd
import numpy as np
np.random.seed(1) #设置随机种子,实现每次生成的随机数矩阵都一样
a= np.random.randint(0, 200,10)
b= np.random.randint(0, 200,10)
c= np.random.randint(0, 200,10)
d= [9,9,9,9,9,9,9,9,9,9]
data=pd.DataFrame({"A" : a,"B" : b,"C" : c,"D" : d})
data
from sklearn.feature_selection import VarianceThreshold
sel_model = VarianceThreshold(threshold = 0)
#删除不合格特征之后的新矩阵
sel_model.fit_transform(data)

来源:https://www.py.cn/jishu/jichu/32599.html

0
投稿

猜你喜欢

手机版 网络编程 asp之家 www.aspxhome.com