利用pandas按日期做分组运算的操作
作者:UMVUE 发布时间:2021-03-06 09:16:17
原始数据
TS PERIOD REQUEST STEPPED VALUE STATUS SECONDS
20-DEC-16 00:00:00.0 600 1 0 2.018 0 1482163200
20-DEC-16 00:01:00.0 600 1 0 2.019 0 1482163260
20-DEC-16 00:02:00.0 600 1 0 2.019 0 1482163320
20-DEC-16 00:03:00.0 600 1 0 2.019 0 1482163380
20-DEC-16 00:04:00.0 600 1 0 2.019 0 1482163440
20-DEC-16 00:05:00.0 600 1 0 2.020 0 1482163500
20-DEC-16 00:06:00.0 600 1 0 2.020 0 1482163560
我们的目标是把TS列从
20-DEC-16 00:00:00.0
转变为
20-DEC-16
的格式,然后按天取均值。
导入包
import numpy as np
from pandas import DataFrame, Series
import pandas as pd
from datetime import datetime
读入文件
df = pd.read_csv('data/test.txt',sep='\t')
这里没有解决中文路径名和绝对路径的问题.
转化为数据框
df = DataFrame(df)
转化为时间格式
将TS列转化为时间格式,并保存为新的一列DATE,之后,只留下DATE和VALUE两列,其他统统不要。
df['DATE'] = pd.to_datetime(df['TS'])
df = df[['DATE','VALUE']]
关键一步
把形如‘2017-9-4 00:00:00'转化为‘2017-9-4 '
df['DATE'] = [datetime.strftime(x,'%Y-%m-%d') for x in df['DATE']]
strftime有若干参数,其中Y表示四位数的年,m表示两位数的月。
旋转数据框
df =df.pivot_table(index='DATE',aggfunc='mean')
补充:利用Pandas和Numpy按时间戳将数据以Groupby方式分组
首先说一下需求,我需要将数据以分钟为单位进行分组,然后每一分钟内的数据作为一行输出,因为不同时间的数据量不一样,所以所有数据按照最长的那组数据为准,不足的数据以各自的最后一个数据进行补足。
之后要介绍一下我的数据源,之前没用的数据列已经去除,我只留下要用到的数据data列和时间戳time列,时间戳是以秒计的,可以看到一共是407454行。
data time
0 6522.50 1.530668e+09
1 6522.66 1.530668e+09
2 6523.79 1.530668e+09
3 6523.79 1.530668e+09
4 6524.82 1.530668e+09
5 6524.35 1.530668e+09
6 6523.66 1.530668e+09
7 6522.64 1.530668e+09
8 6523.25 1.530668e+09
9 6523.88 1.530668e+09
10 6525.30 1.530668e+09
11 6525.70 1.530668e+09
... ... ...
407443 6310.69 1.531302e+09
407444 6310.55 1.531302e+09
407445 6310.42 1.531302e+09
407446 6310.40 1.531302e+09
407447 6314.03 1.531302e+09
407448 6314.04 1.531302e+09
407449 6312.84 1.531302e+09
407450 6312.57 1.531302e+09
407451 6312.56 1.531302e+09
407452 6314.04 1.531302e+09
407453 6314.04 1.531302e+09
[407454 rows x 2 columns]
开始进行数据处理,定义一个函数,输入为一个DataFrame和时间列的命名。
def getdata_time(dataframe,name):
dataframe[name] = dataframe[name]/60 #将时间转换为分钟
dataframe[name] = dataframe[name].astype('int64')
datalen = dataframe.groupby(name).count().max() #获取数据最大长度
timeframe = dataframe.groupby(name).count().reset_index()#为了获取时间将分组后时间转换为DataFrame
timeseries = timeframe['time']
array = [] #建立一个空数组以便存值
for time, group in dataframe.groupby(name):
tmparray = numpy.array(group['data']) #将series转换为数组并添加到总数组中
array.append(tmparray)
notimedata = pandas.DataFrame(array)
notimedata = notimedata.fillna(method='ffill',axis = 1,limit=datalen[0]) #将缺失值补全
notimedata[datalen[0]+1] = timeseries #把时间添加到最后一列
return notimedata
下面将逐行进行分析,首先要以每分钟为依据进行分组,那么将秒计的时间戳除以60变为分钟,转换为int型是为了观察方便(更改类型是否会导致数据精度缺失影响结果并不清楚,如果有了解的人看到欢迎指出,谢谢)。
datalen是我们要用到的每分钟中最大的数据长度,用来作为标齐依据。DataFrame.groupby.count()是分别显示每组数据的个数,并不是显示有多少个分组,如果想要获取分组后每一组的index就需要用到下一行的reset_index方法,之所以不直接用reset_index而是在count()方法后调用是因为groupby分组后的结果不是一个DataFrame,而经过count()(不仅仅是count,对分组数据操作的方法都可以,只要得出的结果是与每一组的index一一对应即可)操作后就可以得到一个以index为一列,另一列是count结果的DataFrame。
以下为直接进行reset_index操作的报错:
AttributeError: Cannot access callable attribute 'reset_index' of 'DataFrameGroupBy' objects, try using the 'apply' method
以下为经过count操作后的reset_index方法显示结果,可以看到一共分为了10397组:
time data
0 25511135 33
1 25511136 18
2 25511137 25
3 25511138 42
4 25511139 36
5 25511140 7
6 25511141 61
7 25511142 45
8 25511143 46
9 25511144 19
10 25511145 21
... ... ...
10387 25521697 3
10388 25521698 9
10389 25521699 16
10390 25521700 13
10391 25521701 4
10392 25521702 34
10393 25521703 124
10394 25521704 302
10395 25521705 86
10396 25521706 52
[10397 rows x 2 columns]
提取的timeseries将在最后数据整合时使用。
现在开始将每组数据提取,首先建立一个空的数组用来存放,然后利用for循环获取每一组的信息,time即为分组的index,group即为每一分组的内容,将数据从group['data']中取出并添加到之前建立的空数组里,循环操作过后转换为DataFrame,当然这个DataFrame中包含了大量缺失值,因为它的列数是以最长的数据为准。
如下:
0 1 2 3 ... 1143 1144 1145 1146
0 6522.50 6522.66 6523.79 6523.79 ... NaN NaN NaN NaN
1 6523.95 6524.90 6525.00 6524.35 ... NaN NaN NaN NaN
2 6520.87 6520.00 6520.45 6520.46 ... NaN NaN NaN NaN
3 6516.34 6516.26 6516.21 6516.21 ... NaN NaN NaN NaN
4 6513.28 6514.00 6514.00 6514.00 ... NaN NaN NaN NaN
5 6511.98 6511.98 6511.99 6513.00 ... NaN NaN NaN NaN
6 6511.00 6511.00 6511.00 6511.00 ... NaN NaN NaN NaN
7 6511.70 6511.78 6511.99 6511.99 ... NaN NaN NaN NaN
8 6509.51 6510.00 6510.80 6510.80 ... NaN NaN NaN NaN
9 6511.36 6510.00 6510.00 6510.00 ... NaN NaN NaN NaN
10 6507.00 6507.00 6507.00 6507.00 ... NaN NaN NaN NaN
... ... ... ... ... ... ... ... ... ...
10386 6333.77 6331.31 6331.30 6333.19 ... NaN NaN NaN NaN
10387 6331.68 6331.30 6331.68 NaN ... NaN NaN NaN NaN
10388 6331.30 6331.30 6331.00 6331.00 ... NaN NaN NaN NaN
10389 6330.93 6330.92 6330.92 6330.93 ... NaN NaN NaN NaN
10390 6330.83 6330.83 6330.90 6330.80 ... NaN NaN NaN NaN
10391 6327.57 6326.00 6326.00 6325.74 ... NaN NaN NaN NaN
10392 6327.57 6329.70 6328.85 6328.85 ... NaN NaN NaN NaN
10393 6323.54 6323.15 6323.15 6322.77 ... NaN NaN NaN NaN
10394 6311.00 6310.83 6310.83 6310.50 ... NaN NaN NaN NaN
10395 6311.45 6311.32 6310.01 6310.01 ... NaN NaN NaN NaN
10396 6310.46 6310.46 6310.56 6311.61 ... NaN NaN NaN NaN
[10397 rows x 1147 columns]
可以看到行数是分组个数,一共1147列也是最多的那组数据长度。
之后我们通过调用fillna方法将缺失值进行填充,method='ffill'是指以缺失值前一个数据为依据,axis = 1是以行为单位,limit是指最大填充长度。最终,把我们之前取得的timeseries添加到最后一列,就得到了需求的最终结果。
0 1 2 ... 1145 1146 1148
0 6522.50 6522.66 6523.79 ... 6522.14 6522.14 25511135
1 6523.95 6524.90 6525.00 ... 6520.00 6520.00 25511136
2 6520.87 6520.00 6520.45 ... 6517.00 6517.00 25511137
3 6516.34 6516.26 6516.21 ... 6514.00 6514.00 25511138
4 6513.28 6514.00 6514.00 ... 6511.97 6511.97 25511139
5 6511.98 6511.98 6511.99 ... 6511.00 6511.00 25511140
6 6511.00 6511.00 6511.00 ... 6510.90 6510.90 25511141
7 6511.70 6511.78 6511.99 ... 6512.09 6512.09 25511142
8 6509.51 6510.00 6510.80 ... 6512.09 6512.09 25511143
9 6511.36 6510.00 6510.00 ... 6507.04 6507.04 25511144
10 6507.00 6507.00 6507.00 ... 6508.57 6508.57 25511145
11 6507.16 6507.74 6507.74 ... 6506.35 6506.35 25511146
... ... ... ... ... ... ... ...
10388 6331.30 6331.30 6331.00 ... 6331.00 6331.00 25521698
10389 6330.93 6330.92 6330.92 ... 6330.99 6330.99 25521699
10390 6330.83 6330.83 6330.90 ... 6327.58 6327.58 25521700
10391 6327.57 6326.00 6326.00 ... 6325.74 6325.74 25521701
10392 6327.57 6329.70 6328.85 ... 6325.00 6325.00 25521702
10393 6323.54 6323.15 6323.15 ... 6311.00 6311.00 25521703
10394 6311.00 6310.83 6310.83 ... 6315.00 6315.00 25521704
10395 6311.45 6311.32 6310.01 ... 6310.00 6310.00 25521705
10396 6310.46 6310.46 6310.56 ... 6314.04 6314.04 25521706
[10397 rows x 1148 columns]
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。如有错误或未考虑完全的地方,望不吝赐教。
来源:https://blog.csdn.net/qq_34514501/article/details/77839297
猜你喜欢
- 代码都比较容易理解的,主要就是在以16进制读取图片信息那段代码有点乱,其实仔细看看,也没什么的。glabal.cssbody{}{ &nbs
- RFC文档有很多,有时候在没有联网的情况下也想翻阅,只能下载一份留存本地了。看了看地址列表,大概是这个范围:http://www.netwo
- 大家在安装程序或下载文件时,通常都能看到进度条,提示你当前任务的进度。其实,在python中实现这个功能很简单,下面是具体代码。在实际应用中
- 今天在设置input的readonly属性遇到问题,上网查到下面的内容,作个标记。今天系统需要使用javascript 动态设置textbo
- 一、并发访问控制实现的并发访问的控制技术是基于锁;锁分为表级锁和行级锁,MyISAM存储引擎不支持行级锁;InnoDB支持表级锁和行级锁;锁
- 首先给大家介绍ThinkPHP函数详解:M方法M方法用于实例化一个基础模型类,和D方法的区别在于:1、不需要自定义模型类,减少IO加载,性能
- go语言里边的字符串处理和PHP还有java 的处理是不一样的,首先申明字符串和修改字符串package mainimport "
- 组合集总计: group by with rollup/cube grouping sets 子查询按执行方式分:标准子查询、关联子查询 标
- 适用的日志格式:106.45.185.214 - - [06/Aug/2014:07:38:59 +0800] "GET / HT
- 皇城PKPython中格式化字符串目前有两种阵营:%和format,我们应该选择哪种呢?自从Python2.6引入了format这个格式化字
- 做计算机视觉方向,除了流行的各种深度学习算法,很多时候也要会基础的图像处理方法。记录下opencv的一些操作(图像映射变换),日后可以方便使
- 一、前言容器使用沙箱机制,互相隔离,优势在于让各个部署在容器的里的应用互不影响,独立运行,提供更高的安全性。本文主要介绍python应用(d
- 我们在做自动化运维的时候,经常需要调用api中的接口,不过很多人不知道具体的调用方法,在学习python中的requests库后,我们就可以
- 最近的答题赢钱很火爆,我也参与了几次,有些题目确实很难答,但是10秒钟的时间根本不够百度的,所以写了个辅助挂,这样可以出现题目时自动百度,这
- <% '测试读取MySql数据库的内容strconnection="driver={mysql odbc 3.51 dri
- 用过Qt的朋友 特别是QtCreator的习惯在界面UI上面对应的CPP中写代码。但是在PyQt中不是这样的。pyQt只是个界面,只会生成界
- 前言在程序中我们经常可以看到有很多的加密算法,比如说MD5 sha1等,今天我们就来了解下这下加密算法的吧,在了解之前我们需要知道一个模块嘛
- 前言ttkbootstrap 是一个基于 tkinter 的界面美化库,使用这个工具可以开发出类似前端 bootstrap 风格的 tkin
- 前言本文主要介绍的是关于python 3用BeautifulSoup抓取div标签的方法示例,分享出来供大家参考学习,下面来看看详细的介绍:
- 背景:实现用python的optimize库的fsolve对非线性方程组进行求解。可以看到这一个问题实际上还是一个优化问题,也可以用之前拟合