Python并发爬虫常用实现方法解析
作者:迎风而来 发布时间:2021-02-06 11:52:08
在进行单个爬虫抓取的时候,我们不可能按照一次抓取一个url的方式进行网页抓取,这样效率低,也浪费了cpu的资源。目前python上面进行并发抓取的实现方式主要有以下几种:进程,线程,协程。进程不在的讨论范围之内,一般来说,进程是用来开启多个spider,比如我们开启了4进程,同时派发4个spider进行网络抓取,每个spider同时抓取4个url。
所以,我们今天讨论的是,在单个爬虫的情况下,尽可能的在同一个时间并发抓取,并且抓取的效率要高。
一.顺序抓取
顺序抓取是最最常见的抓取方式,一般初学爬虫的朋友就是利用这种方式,下面是一个测试代码,顺序抓取8个url,我们可以来测试一下抓取完成需要多少时间:
HEADERS = {'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9',
'Accept-Language': 'zh-CN,zh;q=0.8',
'Accept-Encoding': 'gzip, deflate',}
URLS = ['http://www.cnblogs.com/moodlxs/p/3248890.html',
'https://www.zhihu.com/topic/19804387/newest',
'http://blog.csdn.net/yueguanghaidao/article/details/24281751',
'https://my.oschina.net/visualgui823/blog/36987',
'http://blog.chinaunix.net/uid-9162199-id-4738168.html',
'http://www.tuicool.com/articles/u67Bz26',
'http://rfyiamcool.blog.51cto.com/1030776/1538367/',
'http://itindex.net/detail/26512-flask-tornado-gevent']
#url为随机获取的一批url
def func():
"""
顺序抓取
"""
import requests
import time
urls = URLS
headers = HEADERS
headers['user-agent'] = "Mozilla/5.0+(Windows+NT+6.2;+WOW64)+AppleWebKit/537" \
".36+(KHTML,+like+Gecko)+Chrome/45.0.2454.101+Safari/537.36"
print(u'顺序抓取')
starttime= time.time()
for url in urls:
try:
r = requests.get(url, allow_redirects=False, timeout=2.0, headers=headers)
except:
pass
else:
print(r.status_code, r.url)
endtime=time.time()
print(endtime-starttime)
func()
我们直接采用内建的time.time()来计时,较为粗略,但可以反映大概的情况。下面是顺序抓取的结果计时:
可以从图片中看到,显示的顺序与urls的顺序是一模一样的,总共耗时为7.763269901275635秒,一共8个url,平均抓取一个大概需要0.97秒。总体来看,还可以接受。
二.多线程抓取
线程是python内的一种较为不错的并发方式,我们也给出相应的代码,并且为每个url创建了一个线程,一共8线程并发抓取,下面的代码:
下面是我们运行8线程的测试代码:
HEADERS = {'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9',
'Accept-Language': 'zh-CN,zh;q=0.8',
'Accept-Encoding': 'gzip, deflate',}
URLS = ['http://www.cnblogs.com/moodlxs/p/3248890.html',
'https://www.zhihu.com/topic/19804387/newest',
'http://blog.csdn.net/yueguanghaidao/article/details/24281751',
'https://my.oschina.net/visualgui823/blog/36987',
'http://blog.chinaunix.net/uid-9162199-id-4738168.html',
'http://www.tuicool.com/articles/u67Bz26',
'http://rfyiamcool.blog.51cto.com/1030776/1538367/',
'http://itindex.net/detail/26512-flask-tornado-gevent']
def thread():
from threading import Thread
import requests
import time
urls = URLS
headers = HEADERS
headers['user-agent'] = "Mozilla/5.0+(Windows+NT+6.2;+WOW64)+AppleWebKit/537.36+" \
"(KHTML,+like+Gecko)+Chrome/45.0.2454.101+Safari/537.36"
def get(url):
try:
r = requests.get(url, allow_redirects=False, timeout=2.0, headers=headers)
except:
pass
else:
print(r.status_code, r.url)
print(u'多线程抓取')
ts = [Thread(target=get, args=(url,)) for url in urls]
starttime= time.time()
for t in ts:
t.start()
for t in ts:
t.join()
endtime=time.time()
print(endtime-starttime)
thread()
多线程抓住的时间如下:
可以看到相较于顺序抓取,8线程的抓取效率明显上升了3倍多,全部完成只消耗了2.154秒。可以看到显示的结果已经不是urls的顺序了,说明每个url各自完成的时间都是不一样的。线程就是在一个进程中不断的切换,让每个线程各自运行一会,这对于网络io来说,性能是非常高的。但是线程之间的切换是挺浪费资源的。
三.gevent并发抓取
gevent是一种轻量级的协程,可用它来代替线程,而且,他是在一个线程中运行,机器资源的损耗比线程低很多。如果遇到了网络io阻塞,会马上切换到另一个程序中去运行,不断的轮询,来降低抓取的时间
下面是测试代码:
HEADERS = {'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9',
'Accept-Language': 'zh-CN,zh;q=0.8',
'Accept-Encoding': 'gzip, deflate',}
URLS = ['http://www.cnblogs.com/moodlxs/p/3248890.html',
'https://www.zhihu.com/topic/19804387/newest',
'http://blog.csdn.net/yueguanghaidao/article/details/24281751',
'https://my.oschina.net/visualgui823/blog/36987',
'http://blog.chinaunix.net/uid-9162199-id-4738168.html',
'http://www.tuicool.com/articles/u67Bz26',
'http://rfyiamcool.blog.51cto.com/1030776/1538367/',
'http://itindex.net/detail/26512-flask-tornado-gevent']
def main():
"""
gevent并发抓取
"""
import requests
import gevent
import time
headers = HEADERS
headers['user-agent'] = "Mozilla/5.0+(Windows+NT+6.2;+WOW64)+AppleWebKit/537.36+" \
"(KHTML,+like+Gecko)+Chrome/45.0.2454.101+Safari/537.36"
urls = URLS
def get(url):
try:
r = requests.get(url, allow_redirects=False, timeout=2.0, headers=headers)
except:
pass
else:
print(r.status_code, r.url)
print(u'基于gevent的并发抓取')
starttime= time.time()
g = [gevent.spawn(get, url) for url in urls]
gevent.joinall(g)
endtime=time.time()
print(endtime - starttime)
main()
协程的抓取时间如下:
正常情况下,gevent的并发抓取与多线程的消耗时间差不了多少,但是可能是我网络的原因,或者机器的性能的原因,时间有点长......,请各位小主在自己电脑进行跑一下看运行时间
四.基于tornado的coroutine并发抓取
tornado中的coroutine是python中真正意义上的协程,与python3中的asyncio几乎是完全一样的,而且两者之间的future是可以相互转换的,tornado中有与asyncio相兼容的接口。
下面是利用tornado中的coroutine进行并发抓取的代码:
利用coroutine编写并发略显复杂,但这是推荐的写法,如果你使用的是python3,强烈建议你使用coroutine来编写并发抓取。
下面是测试代码:
HEADERS = {'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9',
'Accept-Language': 'zh-CN,zh;q=0.8',
'Accept-Encoding': 'gzip, deflate',}
URLS = ['http://www.cnblogs.com/moodlxs/p/3248890.html',
'https://www.zhihu.com/topic/19804387/newest',
'http://blog.csdn.net/yueguanghaidao/article/details/24281751',
'https://my.oschina.net/visualgui823/blog/36987',
'http://blog.chinaunix.net/uid-9162199-id-4738168.html',
'http://www.tuicool.com/articles/u67Bz26',
'http://rfyiamcool.blog.51cto.com/1030776/1538367/',
'http://itindex.net/detail/26512-flask-tornado-gevent']
import time
from tornado.gen import coroutine
from tornado.ioloop import IOLoop
from tornado.httpclient import AsyncHTTPClient, HTTPError
from tornado.httpclient import HTTPRequest
#urls与前面相同
class MyClass(object):
def __init__(self):
#AsyncHTTPClient.configure("tornado.curl_httpclient.CurlAsyncHTTPClient")
self.http = AsyncHTTPClient()
@coroutine
def get(self, url):
#tornado会自动在请求首部带上host首部
request = HTTPRequest(url=url,
method='GET',
headers=HEADERS,
connect_timeout=2.0,
request_timeout=2.0,
follow_redirects=False,
max_redirects=False,
user_agent="Mozilla/5.0+(Windows+NT+6.2;+WOW64)+AppleWebKit/537.36+\
(KHTML,+like+Gecko)+Chrome/45.0.2454.101+Safari/537.36",)
yield self.http.fetch(request, callback=self.find, raise_error=False)
def find(self, response):
if response.error:
print(response.error)
print(response.code, response.effective_url, response.request_time)
class Download(object):
def __init__(self):
self.a = MyClass()
self.urls = URLS
@coroutine
def d(self):
print(u'基于tornado的并发抓取')
starttime = time.time()
yield [self.a.get(url) for url in self.urls]
endtime=time.time()
print(endtime-starttime)
if __name__ == '__main__':
dd = Download()
loop = IOLoop.current()
loop.run_sync(dd.d)
抓取的时间如下:
可以看到总共花费了128087秒,而这所花费的时间恰恰就是最后一个url抓取所需要的时间,tornado中自带了查看每个请求的相应时间。我们可以从图中看到,最后一个url抓取总共花了1.28087秒,相较于其他时间大大的增加,这也是导致我们消耗时间过长的原因。那可以推断出,前面的并发抓取,也在这个url上花费了较多的时间。
总结:
以上测试其实非常的不严谨,因为我们选取的url的数量太少了,完全不能反映每一种抓取方式的优劣。如果有一万个不同的url同时抓取,那么记下总抓取时间,是可以得出一个较为客观的结果的。
并且,已经有人测试过,多线程抓取的效率是远不如gevent的。所以,如果你使用的是python2,那么我推荐你使用gevent进行并发抓取;如果你使用的是python3,我推荐你使用tornado的http客户端结合coroutine进行并发抓取。从上面的结果来看,tornado的coroutine是高于gevent的轻量级的协程的。但具体结果怎样,我没测试过。
来源:https://www.cnblogs.com/sui776265233/p/10051238.html


猜你喜欢
- 目录目标为什么操作步骤工程截图运行效果目标在SpringBoot中集成内存数据库Derby.为什么像H2、hsqldb、derby、sqli
- 1、有一个论坛,帖子的数据巨大,请简要说明如何提高用户搜索帖子的效率。 在程序方面,可以使用页面缓存技术。在前台界面着设计方面也可以让用户输
- 前言:HTML5和CSS3的时代到来了,新版2011版淘宝网首页已全部使用HTML5,拥抱变化才是王道。为之漫笔翻译的很好,看了一遍后,感觉
- 如下所示:lists = ['tom','Jack','luCy','lily
- 基于的phantomjs的自动化,会出现1.flash不支持2.部分基于view的按钮点不到,部分按钮是基于flash的(尤其是在于上传按钮
- SQL Server中误删除数据的恢复本来不是件难事,从事务日志恢复即可。但是,这个恢复需要有两个前提条件:1. 至少有一个误删除之前的数据
- 本文实例讲述了Python利用Scrapy框架爬取豆瓣电影。分享给大家供大家参考,具体如下:1、概念Scrapy是一个为了爬取网站数据,提取
- 图片修复程序-可用于水印去除在现实的生活中,我们可能会遇到一些美好的或是珍贵的图片被噪声干扰,比如旧照片的折痕,比如镜头上的灰尘或污渍,更或
- 1. fixture的声明我们使用@pytest.fixture()来声明fixture函数。fixture()即可无参数进行声明,也可以带
- 本文实例讲述了python实现的自动发送消息功能。分享给大家供大家参考,具体如下:一个简单的脚本#-*- coding:utf-8 -*-f
- 全文检索里的组件简介1. 什么是haystack?1. haystack是django的开源搜索框架,该框架支持Solr,Elasticse
- 0.配置依赖环境,如果不进行这步可能会出现一些问题中间可能有多余空格,去除下再运行,一般都能安装成功,如果不能可以先更新下sudo apt-
- 用dicompyler软件打开dicom图像,头文件如图所示:当然也可以直接读取:ds = dicom.read_file('H:\
- 可以压缩文件和目录。package mainimport ( "archive/zip" &qu
- 1.什么是JDBCJDBC是一种用于执行SQL语句的Java API,可以为多种关系数据库提供统一访问,它由一组用Java语言编写的类和接口
- 这篇文章主要介绍了python 图像处理画一个正弦函数代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,
- python中字典是非常常用的数据类型,了解各种方法的作用及优缺点对于字典的使用非常有用。dict.clear() 的方法用于清空所有的键值
- 以前跟同事开玩笑时说过,我们遇到的用户在访谈测试过程中的表现基本上就三种类型,发泄型,赞美型和实话实说型。发泄型用户通常是在产品的使用过程中
- 如何只取数据库的前3条记录?怎么控制只取得前3行数据 这要看是什么类型的数据库了,对于Access和SQ
- 方法在 Golang 中没有类,不过我们可以为结构体定义方法。我们看一个例子:package main import (