软件编程
位置:首页>> 软件编程>> java编程>> 从Hello World开始理解GraphQL背后处理及执行过程

从Hello World开始理解GraphQL背后处理及执行过程

作者:王者之峰  发布时间:2023-06-04 00:25:53 

标签:GraphQL,处理,执行过程

前言

在上篇文章《初识GraphQL》中我们大致的了解了GraphQL作用,并通过简单示例初步体验了GraphQL的使用。下面我们从Hello World开始来进一步了解GraphQL背后的处理。

Hello World

package com.graphqljava.tutorial.bookdetails;
import graphql.ExecutionResult;
import graphql.GraphQL;
import graphql.schema.GraphQLSchema;
import graphql.schema.StaticDataFetcher;
import graphql.schema.idl.RuntimeWiring;
import graphql.schema.idl.SchemaGenerator;
import graphql.schema.idl.SchemaParser;
import graphql.schema.idl.TypeDefinitionRegistry;
public class HelloWorld {
   public static void main(String[] args) {
       // 从最简单的schema字符串开始,省去对graphqls文件的读取
       String schema = "type Query{hello: String}";
       // 用于获得graphql schema定义,并解析放入TypeDefinitionRegistry中,以便放置在SchemaGenerator中使用
       SchemaParser schemaParser = new SchemaParser();
       // 解析schema定义字符串,并创建包含一组类型定义的TypeDefinitionRegistry
       TypeDefinitionRegistry typeDefinitionRegistry = schemaParser.parse(schema);
       // runtime wiring 是data fetchers、type resolves和定制标量的规范,这些都需要连接到GraphQLSchema中
       RuntimeWiring runtimeWiring = RuntimeWiring.newRuntimeWiring()
               // 添加一个类型连接
               .type("Query", builder -> builder.dataFetcher("hello", new StaticDataFetcher("world")))
               .build();
       //schemaGenerator对象可以使用typeDefinitionRegistry、runtimeWiring生成工作运行时schema
       SchemaGenerator schemaGenerator = new SchemaGenerator();
       //graphQLSchema代表graphql引擎的组合类型系统。
       GraphQLSchema graphQLSchema = schemaGenerator.makeExecutableSchema(typeDefinitionRegistry, runtimeWiring);
       //构建GraphQL用于执行查询
       GraphQL build = GraphQL.newGraphQL(graphQLSchema).build();
       //执行并获得结果
       ExecutionResult executionResult = build.execute("{hello}");
       System.out.println(executionResult.getData().toString());
   }
}

从上面的代码注释可以看到GraphQL大致执行的过程:

  • 根据给定的schema内容使用SchemaParser进行解析获得schema定义TypeDefinitionRegistry。

  • 拿到了schema定义之后还需要定义RuntimeWiring用于定义不同类型的type resolves和对应的数据提取器data fetchers。

  • 使用GraphQLSchema把TypeDefinitionRegistry和RuntimeWiring组合在一起便于以后的使用。

  • 使用GraphQLSchema构建出GraphQL用于后面的QL执行。

  • 传入QL使用GraphQL执行并获得结果ExecutionResult。

从外层使用代码可以得出核心处理类为:SchemaParser、TypeDefinitionRegistry、RuntimeWiring、GraphQLSchema、GraphQL。

下面我们分配看看核心类是怎么处理的。

SchemaParser

解析schema字符串定义并生成TypeDefinitionRegistry。

public TypeDefinitionRegistry parse(String schemaInput) throws SchemaProblem {
   try {
       Parser parser = new Parser();
       Document document = parser.parseDocument(schemaInput);
       return buildRegistry(document);
   } catch (ParseCancellationException e) {
       throw handleParseException(e);
   }
}

使用Document构建TypeDefinitionRegistry

public TypeDefinitionRegistry buildRegistry(Document document) {
   List<GraphQLError> errors = new ArrayList<>();
   TypeDefinitionRegistry typeRegistry = new TypeDefinitionRegistry();
   List<Definition> definitions = document.getDefinitions();
   for (Definition definition : definitions) {
       if (definition instanceof SDLDefinition) {
           typeRegistry.add((SDLDefinition) definition).ifPresent(errors::add);
       }
   }
   if (errors.size() > 0) {
       throw new SchemaProblem(errors);
   } else {
       return typeRegistry;
   }
}

可以看的出来TypeDefinitionRegistry只是对Document的定义提取,重点还是在于Document的生成,我们可以先通过debugger来先看看Document的大致内容。

从Hello World开始理解GraphQL背后处理及执行过程

可以看到就是把schema字符串解析成了方便后续使用的Document对象,我们还是详细看看这个对象里面的属性和大概的生成过程。

Parser#parseDocument

public Document parseDocument(String input, String sourceName) {
   CharStream charStream;
   if(sourceName == null) {
       charStream = CharStreams.fromString(input);
   } else{
       charStream = CharStreams.fromString(input, sourceName);
   }
   GraphqlLexer lexer = new GraphqlLexer(charStream);
   CommonTokenStream tokens = new CommonTokenStream(lexer);
   GraphqlParser parser = new GraphqlParser(tokens);
   parser.removeErrorListeners();
   parser.getInterpreter().setPredictionMode(PredictionMode.SLL);
   parser.setErrorHandler(new BailErrorStrategy());
   //词法分析从schema中解析出tokens(每个关键字、最后一个为EOF),documentContext包含children、start/stop字符等相当于结构。
   GraphqlParser.DocumentContext documentContext = parser.document();
   GraphqlAntlrToLanguage antlrToLanguage = new GraphqlAntlrToLanguage(tokens);
   // 生成document
   Document doc = antlrToLanguage.createDocument(documentContext);
   Token stop = documentContext.getStop();
   List<Token> allTokens = tokens.getTokens();
   if (stop != null && allTokens != null && !allTokens.isEmpty()) {
       Token last = allTokens.get(allTokens.size() - 1);
       //
       // do we have more tokens in the stream than we consumed in the parse?
       // if yes then its invalid.  We make sure its the same channel
       boolean notEOF = last.getType() != Token.EOF;
       boolean lastGreaterThanDocument = last.getTokenIndex() > stop.getTokenIndex();
       boolean sameChannel = last.getChannel() == stop.getChannel();
       if (notEOF && lastGreaterThanDocument && sameChannel) {
           throw new ParseCancellationException("There are more tokens in the query that have not been consumed");
       }
   }
   return doc;
}

tokens&documentContext

从Hello World开始理解GraphQL背后处理及执行过程

可以看到,主要是通过提取schema的关键字、识别结构最后生成Document主要内容为类型定义定义和类型定义中的字段定义。

RuntimeWiring

runtime wiring 是data fetchers、type resolves和定制标量的规范,这些都需要连接到GraphQLSchema中。

RuntimeWiring.Builder#type

这种形式允许使用lambda作为type wiring的构建器。

public Builder type(String typeName, UnaryOperator<TypeRuntimeWiring.Builder> builderFunction) {
   TypeRuntimeWiring.Builder builder = builderFunction.apply(TypeRuntimeWiring.newTypeWiring(typeName));
   return type(builder.build());
}

添加type wiring。

public Builder type(TypeRuntimeWiring typeRuntimeWiring) {
   String typeName = typeRuntimeWiring.getTypeName();
   Map<String, DataFetcher> typeDataFetchers = dataFetchers.computeIfAbsent(typeName, k -> new LinkedHashMap<>());
   typeRuntimeWiring.getFieldDataFetchers().forEach(typeDataFetchers::put);
   defaultDataFetchers.put(typeName, typeRuntimeWiring.getDefaultDataFetcher());
   TypeResolver typeResolver = typeRuntimeWiring.getTypeResolver();
   if (typeResolver != null) {
       this.typeResolvers.put(typeName, typeResolver);
   }
   EnumValuesProvider enumValuesProvider = typeRuntimeWiring.getEnumValuesProvider();
   if (enumValuesProvider != null) {
       this.enumValuesProviders.put(typeName, enumValuesProvider);
   }
   return this;
}

可以看到主要就是网RuntimeWiring里面添加了dataFetchers、defaultDataFetchers、typeResolvers、enumValuesProviders。下面分别介绍下各属性的含义:

  • DataFetcher:负责返回给定graphql字段数据值。graphql引擎使用datafetcher将逻辑字段解析/获取到运行时对象,该对象将作为整个graphql grapql.ExecutionResult的一部分发送回来。

从Hello World开始理解GraphQL背后处理及执行过程

GraphQLScalarType:scalar type是graphql树类型的叶节点。该类型允许你定义新的scalar type。

从Hello World开始理解GraphQL背后处理及执行过程

  • TypeResolver:这在类型解析期间被调用,以确定在运行时GraphQLInterfaceTypes和GraphQLUnionTypes应该动态使用哪些具体的GraphQLObjectType。

    • GraphQLInterfaceTypes:在graphql中,接口是一种抽象类型,它定义了一组字段,类型必须包含这些字段才能实现该接口。在运行时,TypeResolver用于获取一个接口对象值,并决定哪个GraphQLObjectType表示此接口类型。关于这个概念的更多细节,请参见graphql.org/learn/schem&hellip;

    • GraphQLUnionTypes:联合类型,相当于组合。

    • GraphQLObjectType:这是工作马类型,表示一个对象,它具有一个或多个字段值,这些字段可以根据对象类型等进行自身的处理,直到到达由GraphQLScalarTypes表示的类型树的叶节点。关于这个概念的更多细节,请参见graphql.org/learn/schem&hellip;

  • SchemaDirectiveWiring:SchemaDirectiveWiring负责基于schema定义语言(SDL)中放置在该元素上的指令增强运行时元素。它可以增强graphql运行时元素并添加新的行为,例如通过更改字段graphql.schema. datafetcher。

  • WiringFactory:WiringFactory允许您基于IDL定义更动态的连接TypeResolvers和DataFetchers。

  • EnumValuesProvider:为每个graphql Enum值提供Java运行时值。用于IDL驱动的schema创建。Enum值被认为是静态的:在创建schema时调用。在执行查询时不使用。

  • GraphqlFieldVisibility:这允许您控制graphql字段的可见性。默认情况下,graphql-java使每个定义的字段可见,但您可以实现此接口的实例并减少特定字段的可见性。

GraphQL

build

例子中通过传入GraphQLSchema构建GraphQL。

public GraphQL build() {
   assertNotNull(graphQLSchema, "graphQLSchema must be non null");
   assertNotNull(queryExecutionStrategy, "queryStrategy must be non null");
   assertNotNull(idProvider, "idProvider must be non null");
   return new GraphQL(graphQLSchema, queryExecutionStrategy, mutationExecutionStrategy, subscriptionExecutionStrategy, idProvider, instrumentation, preparsedDocumentProvider);
}

除了graphQLSchema都是默认值,我们大概看看各个成员分别是用来干嘛的:

  • queryExecutionStrategy:异步非阻塞地运行字段的标准graphql执行策略。

  • mutationExecutionStrategy:异步非阻塞执行,但串行:当时只有一个字段将被解析。关于每个字段的非串行(并行)执行,请参阅AsyncExecutionStrategy。

  • subscriptionExecutionStrategy:通过使用reactive-streams作为订阅查询的输出结果来实现graphql订阅。

  • idProvider:executionid的提供者

  • instrumentation:提供了检测GraphQL查询执行步骤的功能。

  • preparsedDocumentProvider:客户端连接文档缓存和/或查询白名单的接口。

execute

下面我们还是来看看具体的执行:

public ExecutionResult execute(ExecutionInput executionInput) {
   try {
       return executeAsync(executionInput).join();
   } catch (CompletionException e) {
       if (e.getCause() instanceof RuntimeException) {
           throw (RuntimeException) e.getCause();
       } else {
           throw e;
       }
   }
}

用提供的输入对象执行graphql query。这将返回一个承诺(又名CompletableFuture),以提供一个ExecutionResult,这是执行所提供查询的结果。

public CompletableFuture<ExecutionResult> executeAsync(ExecutionInput executionInput) {
   try {
       log.debug("Executing request. operation name: '{}'. query: '{}'. variables '{}'", executionInput.getOperationName(), executionInput.getQuery(), executionInput.getVariables());
       // 创建InstrumentationState对象,这是一个跟踪Instrumentation全生命周期的对象
       InstrumentationState instrumentationState = instrumentation.createState(new InstrumentationCreateStateParameters(this.graphQLSchema, executionInput));
       InstrumentationExecutionParameters inputInstrumentationParameters = new InstrumentationExecutionParameters(executionInput, this.graphQLSchema, instrumentationState);
       // 检测输入对象
       executionInput = instrumentation.instrumentExecutionInput(executionInput, inputInstrumentationParameters);
       InstrumentationExecutionParameters instrumentationParameters = new InstrumentationExecutionParameters(executionInput, this.graphQLSchema, instrumentationState);
       // 在执行检测 chain前调用
       InstrumentationContext<ExecutionResult> executionInstrumentation = instrumentation.beginExecution(instrumentationParameters);
       // 检测GraphQLSchema
       GraphQLSchema graphQLSchema = instrumentation.instrumentSchema(this.graphQLSchema, instrumentationParameters);
       // 对客户端传递的query进行验证并执行
       CompletableFuture<ExecutionResult> executionResult = parseValidateAndExecute(executionInput, graphQLSchema, instrumentationState);
       //
       // finish up instrumentation
       executionResult = executionResult.whenComplete(executionInstrumentation::onCompleted);
       //
       // allow instrumentation to tweak the result
       executionResult = executionResult.thenCompose(result -> instrumentation.instrumentExecutionResult(result, instrumentationParameters));
       return executionResult;
   } catch (AbortExecutionException abortException) {
       return CompletableFuture.completedFuture(abortException.toExecutionResult());
   }
}

parseValidateAndExecute(executionInput, graphQLSchema, instrumentationState)进行验证并执行,验证我们就不看了直接看执行:

private CompletableFuture<ExecutionResult> execute(ExecutionInput executionInput, Document document, GraphQLSchema graphQLSchema, InstrumentationState instrumentationState) {
   String query = executionInput.getQuery();
   String operationName = executionInput.getOperationName();
   Object context = executionInput.getContext();
   Execution execution = new Execution(queryStrategy, mutationStrategy, subscriptionStrategy, instrumentation);
   ExecutionId executionId = idProvider.provide(query, operationName, context);
   log.debug("Executing '{}'. operation name: '{}'. query: '{}'. variables '{}'", executionId, executionInput.getOperationName(), executionInput.getQuery(), executionInput.getVariables());
   CompletableFuture<ExecutionResult> future = execution.execute(document, graphQLSchema, executionId, executionInput, instrumentationState);
   future = future.whenComplete((result, throwable) -> {
       if (throwable != null) {
           log.error(String.format("Execution '%s' threw exception when executing : query : '%s'. variables '%s'", executionId, executionInput.getQuery(), executionInput.getVariables()), throwable);
       } else {
           int errorCount = result.getErrors().size();
           if (errorCount > 0) {
               log.debug("Execution '{}' completed with '{}' errors", executionId, errorCount);
           } else {
               log.debug("Execution '{}' completed with zero errors", executionId);
           }
       }
   });
   return future;
}

这里打印日志为

Executing '9c81e267-c55a-4ebd-9f9c-3a2270b28103'. operation name: 'null'. query: '{hello}'. variables '{}'

还要继续往下看:

Execution#execute

public CompletableFuture<ExecutionResult> execute(Document document, GraphQLSchema graphQLSchema, ExecutionId executionId, ExecutionInput executionInput, InstrumentationState instrumentationState) {
   // 获得要执行的操作
   NodeUtil.GetOperationResult getOperationResult = NodeUtil.getOperation(document, executionInput.getOperationName());
   Map<String, FragmentDefinition> fragmentsByName = getOperationResult.fragmentsByName;
   OperationDefinition operationDefinition = getOperationResult.operationDefinition;
   ValuesResolver valuesResolver = new ValuesResolver();
   // 获得输入的参数
   Map<String, Object> inputVariables = executionInput.getVariables();
   List<VariableDefinition> variableDefinitions = operationDefinition.getVariableDefinitions();
   Map<String, Object> coercedVariables;
   try {
       coercedVariables = valuesResolver.coerceArgumentValues(graphQLSchema, variableDefinitions, inputVariables);
   } catch (RuntimeException rte) {
       if (rte instanceof GraphQLError) {
           return completedFuture(new ExecutionResultImpl((GraphQLError) rte));
       }
       throw rte;
   }
   ExecutionContext executionContext = newExecutionContextBuilder()
           .instrumentation(instrumentation)
           .instrumentationState(instrumentationState)
           .executionId(executionId)
           .graphQLSchema(graphQLSchema)
           .queryStrategy(queryStrategy)
           .mutationStrategy(mutationStrategy)
           .subscriptionStrategy(subscriptionStrategy)
           .context(executionInput.getContext())
           .root(executionInput.getRoot())
           .fragmentsByName(fragmentsByName)
           .variables(coercedVariables)
           .document(document)
           .operationDefinition(operationDefinition)
           // 放入dataloder
           .dataLoaderRegistry(executionInput.getDataLoaderRegistry())
           .build();
   InstrumentationExecutionParameters parameters = new InstrumentationExecutionParameters(
           executionInput, graphQLSchema, instrumentationState
   );
   // 获得执行上下文
   executionContext = instrumentation.instrumentExecutionContext(executionContext, parameters);
   return executeOperation(executionContext, parameters, executionInput.getRoot(), executionContext.getOperationDefinition());
}

获得了执行上下文并执行,下面继续看executeOperation

private CompletableFuture<ExecutionResult> executeOperation(ExecutionContext executionContext, InstrumentationExecutionParameters instrumentationExecutionParameters, Object root, OperationDefinition operationDefinition) {
   // ...
   ExecutionStrategyParameters parameters = newParameters()
           .executionStepInfo(executionStepInfo)
           .source(root)
           .fields(fields)
           .nonNullFieldValidator(nonNullableFieldValidator)
           .path(path)
           .build();
   CompletableFuture<ExecutionResult> result;
   try {
       ExecutionStrategy executionStrategy;
       if (operation == OperationDefinition.Operation.MUTATION) {
           executionStrategy = mutationStrategy;
       } else if (operation == SUBSCRIPTION) {
           executionStrategy = subscriptionStrategy;
       } else {
           executionStrategy = queryStrategy;
       }
       log.debug("Executing '{}' query operation: '{}' using '{}' execution strategy", executionContext.getExecutionId(), operation, executionStrategy.getClass().getName());
       result = executionStrategy.execute(executionContext, parameters);
   } catch (NonNullableFieldWasNullException e) {
         // ...
   }
   // ...
   return deferSupport(executionContext, result);
}

日志输出:

Executing '9c81e267-c55a-4ebd-9f9c-3a2270b28103' query operation: 'QUERY' using 'graphql.execution.AsyncExecutionStrategy' execution strategy

最终使用AsyncExecutionStrategy策略执行,继续往下看:

AsynExecutionStrategy#execute

public CompletableFuture<ExecutionResult> execute(ExecutionContext executionContext, ExecutionStrategyParameters parameters) throws NonNullableFieldWasNullException {
   Instrumentation instrumentation = executionContext.getInstrumentation();
   InstrumentationExecutionStrategyParameters instrumentationParameters = new InstrumentationExecutionStrategyParameters(executionContext, parameters);
   ExecutionStrategyInstrumentationContext executionStrategyCtx = instrumentation.beginExecutionStrategy(instrumentationParameters);
   Map<String, List<Field>> fields = parameters.getFields();
   // 字段名称
   List<String> fieldNames = new ArrayList<>(fields.keySet());
   List<CompletableFuture<FieldValueInfo>> futures = new ArrayList<>();
   List<String> resolvedFields = new ArrayList<>();
   for (String fieldName : fieldNames) {
       List<Field> currentField = fields.get(fieldName);
       ExecutionPath fieldPath = parameters.getPath().segment(mkNameForPath(currentField));
       ExecutionStrategyParameters newParameters = parameters
               .transform(builder -> builder.field(currentField).path(fieldPath).parent(parameters));
       if (isDeferred(executionContext, newParameters, currentField)) {
           executionStrategyCtx.onDeferredField(currentField);
           continue;
       }
       resolvedFields.add(fieldName);
       // 处理字段,这里处理的是"hello"
       CompletableFuture<FieldValueInfo> future = resolveFieldWithInfo(executionContext, newParameters);
       futures.add(future);
   }
   CompletableFuture<ExecutionResult> overallResult = new CompletableFuture<>();
   executionStrategyCtx.onDispatched(overallResult);
   //并行执行所有filed处理的futures
   Async.each(futures).whenComplete((completeValueInfos, throwable) -> {
       BiConsumer<List<ExecutionResult>, Throwable> handleResultsConsumer = handleResults(executionContext, resolvedFields, overallResult);
       if (throwable != null) {
           handleResultsConsumer.accept(null, throwable.getCause());
           return;
       }
       List<CompletableFuture<ExecutionResult>> executionResultFuture = completeValueInfos.stream().map(FieldValueInfo::getFieldValue).collect(Collectors.toList());
       executionStrategyCtx.onFieldValuesInfo(completeValueInfos);
       Async.each(executionResultFuture).whenComplete(handleResultsConsumer);
   }).exceptionally((ex) -> {
       // if there are any issues with combining/handling the field results,
       // complete the future at all costs and bubble up any thrown exception so
       // the execution does not hang.
       overallResult.completeExceptionally(ex);
       return null;
   });
   overallResult.whenComplete(executionStrategyCtx::onCompleted);
   return overallResult;
}

可以看到这里会遍历所有fileds拿到每个filed future,最后并行执行,下面具体看看:

ExecutionStrategy#resolveFieldWithInfo

调用该函数来获取字段的值及额外的运行时信息,并根据graphql query内容进一步处理它。

protected CompletableFuture<FieldValueInfo> resolveFieldWithInfo(ExecutionContext executionContext, ExecutionStrategyParameters parameters) {
   GraphQLFieldDefinition fieldDef = getFieldDef(executionContext, parameters, parameters.getField().get(0));
   Instrumentation instrumentation = executionContext.getInstrumentation();
   InstrumentationContext<ExecutionResult> fieldCtx = instrumentation.beginField(
           new InstrumentationFieldParameters(executionContext, fieldDef, createExecutionStepInfo(executionContext, parameters, fieldDef))
   );
   CompletableFuture<Object> fetchFieldFuture = fetchField(executionContext, parameters);
   CompletableFuture<FieldValueInfo> result = fetchFieldFuture.thenApply((fetchedValue) ->
           completeField(executionContext, parameters, fetchedValue));
   CompletableFuture<ExecutionResult> executionResultFuture = result.thenCompose(FieldValueInfo::getFieldValue);
   fieldCtx.onDispatched(executionResultFuture);
   executionResultFuture.whenComplete(fieldCtx::onCompleted);
   return result;
}

调用该函数获取filed值,使用从filed GraphQlFiledDefinition关联的DataFetcher。

protected CompletableFuture<Object> fetchField(ExecutionContext executionContext, ExecutionStrategyParameters parameters) {
   Field field = parameters.getField().get(0);
   GraphQLObjectType parentType = (GraphQLObjectType) parameters.getExecutionStepInfo().getUnwrappedNonNullType();
   GraphQLFieldDefinition fieldDef = getFieldDef(executionContext.getGraphQLSchema(), parentType, field);
   GraphqlFieldVisibility fieldVisibility = executionContext.getGraphQLSchema().getFieldVisibility();
   Map<String, Object> argumentValues = valuesResolver.getArgumentValues(fieldVisibility, fieldDef.getArguments(), field.getArguments(), executionContext.getVariables());
   GraphQLOutputType fieldType = fieldDef.getType();
   DataFetchingFieldSelectionSet fieldCollector = DataFetchingFieldSelectionSetImpl.newCollector(executionContext, fieldType, parameters.getField());
   // ...
   CompletableFuture<Object> fetchedValue;
   // 获得dataFetcher,这里为HelloWorld的`new StaticDataFetcher("world")`
   DataFetcher dataFetcher = fieldDef.getDataFetcher();
   dataFetcher = instrumentation.instrumentDataFetcher(dataFetcher, instrumentationFieldFetchParams);
   ExecutionId executionId = executionContext.getExecutionId();
   try {
       log.debug("'{}' fetching field '{}' using data fetcher '{}'...", executionId, executionStepInfo.getPath(), dataFetcher.getClass().getName());
       // 执行dataFetcher获取值,enviroment为上下文环境包含参数
       Object fetchedValueRaw = dataFetcher.get(environment);
       log.debug("'{}' field '{}' fetch returned '{}'", executionId, executionStepInfo.getPath(), fetchedValueRaw == null ? "null" : fetchedValueRaw.getClass().getName());
       // 如果是具体值就返回已经有值的CompletableFuture,如果是CompletionStage就直接返回
       fetchedValue = Async.toCompletableFuture(fetchedValueRaw);
   } catch (Exception e) {
       log.debug(String.format("'%s', field '%s' fetch threw exception", executionId, executionStepInfo.getPath()), e);
       fetchedValue = new CompletableFuture<>();
       fetchedValue.completeExceptionally(e);
   }
   fetchCtx.onDispatched(fetchedValue);
   // 对结果的后续处理
   return fetchedValue
           .handle((result, exception) -> {
               fetchCtx.onCompleted(result, exception);
               if (exception != null) {
                   handleFetchingException(executionContext, parameters, field, fieldDef, argumentValues, environment, exception);
                   return null;
               } else {
                   return result;
               }
           })
           .thenApply(result -> unboxPossibleDataFetcherResult(executionContext, parameters, result))
           .thenApply(this::unboxPossibleOptional);
}

总体执行过程

从Hello World开始理解GraphQL背后处理及执行过程

来源:https://juejin.cn/post/7127282158430847006

0
投稿

猜你喜欢

手机版 软件编程 asp之家 www.aspxhome.com