软件编程
位置:首页>> 软件编程>> Android编程>> Kotlin协程的线程调度示例详解

Kotlin协程的线程调度示例详解

作者:rencai  发布时间:2023-12-26 20:19:56 

标签:Kotlin,协程,线程,调度

引言

在第一篇文章中我们分析了协程启动创建过程启动过程,在本文中,我们将着重剖析协程中协程调度的逻辑流程。主要是分析解答如下2个问题:

  • 涉及到协程方法器是如何将协程代码调度到特定的线程执行?

  • 子协程执行完又是如何切换0回父协程的线程环境?

一、协程的分发器作用

1.1 测试代码

GlobalScope.launch {
   //协程体1
   Log.d(TAG, "before suspend job.")
   withContext(Dispatchers.Main) {
       //协程体2
       Log.d(TAG, "print in Main thread.")
   }
   Log.d(TAG, "after suspend job.")
}
  • 此次的协程测试用例中,我们默认的launch一个协程,我们简单的将launch需要执行的这外层逻辑为协程体1

  • 在协程体1中,我们使用withContext将协程切换到主线程执行,打印日志。我们将这里面执行的协程逻辑为协程体2

  • 协程体2执行完成后,切回协程体1中执行并打印Log。

  • 注意,根据我们之前《协程的创建与启动》文章中分析的,Kotlin编译器针对协程体1和协程体2分别生成一个继承与SuspenLamabda的类型,比如:class MainActivity#onCreate$1 : SuspenLambda{...}。我们在讲协程体时,也同时代指这个类实例。

继续跟踪launch()函数执行逻辑,这次跟踪过程不同与《协程的创建与启动》篇章,我们会将侧重点放在启动过程中协程调度器是如何起作用的?接下来见1.2

1.2 CoroutineScope.launch

public fun CoroutineScope.launch(
   context: CoroutineContext = EmptyCoroutineContext,
   start: CoroutineStart = CoroutineStart.DEFAULT,
   block: suspend CoroutineScope.() -> Unit
): Job {
   //1. 见1.2.1
   val newContext = newCoroutineContext(context)
   val coroutine = if (start.isLazy)
       LazyStandaloneCoroutine(newContext, block) else
       StandaloneCoroutine(newContext, active = true)
   //2. 详见1.3
   coroutine.start(start, coroutine, block)
   return coroutine
}
  • 这里会新建一个CoroutineContext,详见1.2.1

  • 根据之前的分析,这个里最终会调用到startCoroutineCancellable()方法,详见1.3流程。

1.2.1 newCoroutineContext

public actual fun CoroutineScope.newCoroutineContext(context: CoroutineContext): CoroutineContext {
   val combined = foldCopies(coroutineContext, context, true)
   val debug = if (DEBUG) combined + CoroutineId(COROUTINE_ID.incrementAndGet()) else combined
   return
   if (combined !== Dispatchers.Default && combined[ContinuationInterceptor] == null)
       debug + Dispatchers.Default
   else
   debug
}

coroutineContextcoroutineContextCoroutineScope的成员变量,当此时为GlobalScope.coroutineContext==EmptyCoroutineContext

context:由于调用launch时没有指定Context,所以传到此处也是EmptyCoroutineContextfoldCopies()函数将2个context相加并拷贝,最终combied==EmptyCoroutineContext

而在return这最后判断返回的是debug+Dispatchers.Defatult,所以此时默认的分发器为Dispatchers.Defatult

这里涉及到的协程Context运算不做深入剖析,简单可以认为协程重写了“+”运算,使得Context之间可以使用“+”来叠加,没有的Element类型会被添加到Element集合,集合中已有的Element类型会被覆盖。

1.3 startCoroutineCancellable

internal fun <R, T> (suspend (R) -> T).startCoroutineCancellable(
   receiver: R, completion: Continuation<T>,
   onCancellation: ((cause: Throwable) -> Unit)? = null
) =
   runSafely(completion) {
   //1. 创建SuspendLambda协程体
       createCoroutineUnintercepted(receiver, completion)
           //2. 拦截:取出分发器,并构建方法器Continuation。详见1.3.1
           .intercepted()
           //3. 调用方法器Continuation的resume方法,详见1.4
           .resumeCancellableWith(Result.success(Unit), onCancellation)
   }
  • 这里的构建协程体在《协程的创建与启动》一节中已经剖析,不再赘述。

  • 进行拦截,注意:这里其实会根据方法器再构建出一个DispatchedContinuation对象,它也是一个续体类型,这是对协程体的一次包装。详见1.3.1小节。

  • 调用 * 续体的resumeCancellableWith()开始状态机流转,执行分发流程详见1.4小节。

1.3.1 intercepted()

public fun intercepted(): Continuation<Any?> =
       intercepted?: (
               //1. 取出 *
               context[ContinuationInterceptor]?
                   //2.构建 * 续体
                   .interceptContinuation(this)?: this)
               .also { intercepted = it }
  • 取出当前上下文中的 * 类型,根据之前1.2.1小节的分析,这里取出来的是Dispatchers.Defatult

  • interceptContinuation(this)为构建 * 续体,注意这里传入的this协程体1。 详见1.3.2。

1.3.2 CoroutineDispatcher

//Base class to be extended by all coroutine dispatcher implementations.
public abstract class CoroutineDispatcher :
   AbstractCoroutineContextElement(ContinuationInterceptor), ContinuationInterceptor {
public final override fun <T> interceptContinuation(continuation: Continuation<T>):
       //详见1.4
       Continuation<T> = DispatchedContinuation(this, continuation)
}

直接新建了一个DispatchedContinuation对象实例这里需要注意传入的构建参数:

  • this:当前Dispatcher,也就是Dispatchers.Defatult

  • continuation:协程体1。

1.3.3 小结

自此Continuation.intercepted()方法就分析结束,最终的结果是:用上下文中的Dispatcher和当前Contination对象也就是协程体1,共同作为构建参数,新建了一个DispatchedContinuation对象。

接下来接着1.3中的第三点,调用DispatchedContinuation.resumeCancellableWith()方法开始分析。

1.4 DispatchedContinuation

internal class DispatchedContinuation<in T>(
   //1. 分发器
   @JvmField val dispatcher: CoroutineDispatcher,
//2. 注意这里将Continuation的实现委托给了continuation成员变量。
   @JvmField val continuation: Continuation<T>
) : DispatchedTask<T>(MODE_UNINITIALIZED)
, CoroutineStackFrame,
Continuation<T> by continuation {
   //3. 复写属性delegate为自己
   override val delegate: Continuation<T>
       get() = this
   ...
   // We inline it to save an entry on the stack in cases where it shows (unconfined dispatcher)
   // It is used only in Continuation<T>.resumeCancellableWith
   @Suppress("NOTHING_TO_INLINE")
   inline fun resumeCancellableWith(
       result: Result<T>,
       noinline onCancellation: ((cause: Throwable) -> Unit)?
   ) {
       val state = result.toState(onCancellation)
       //默认为true
       if (dispatcher.isDispatchNeeded(context)) {
           _state = state
           resumeMode = MODE_CANCELLABLE
           //4. 详细见
           dispatcher.dispatch(context, this)
       } else {
           executeUnconfined(state, MODE_CANCELLABLE) {
               if (!resumeCancelled(state)) {
                   resumeUndispatchedWith(result)
               }
           }
       }
   }
}

这里的dispatcher==Dispatchers.Defatult,所以接下来需要解析Dispatchers.Defatult到底是什么东西。详见1.5

  • 成员变量dispatcher==Dispatchers.Default

  • 成员变量continucation==协程体1(SuspenLambda类型实例)。同时DispatchedContinuation继承于Continuation接口,它将Continuation接口的实现委托给了成员变量continuation

  • deleagte为复写了DispatchedTask.delegate属性,将其返回自己。

  • 调用分发器也就是Dispatchers.Defatultdispatch()方法,注意这里传入的参数:

context:来自Continuation接口的属性,由于委托给了成员变量continuation,所以此context==continuation.context

this:分发器本身Dispatchers.Defatult

自此这个方法的分析结束:调用分发器的进行分发,接下来分析就开始分析协程方法器CoroutineDispatcher

1.5 DefaultScheduler

//Dispathcer.kt
@JvmStatic
public actual val Default: CoroutineDispatcher = DefaultScheduler
//Dispathcer.kt
// Instance of Dispatchers.Default
internal object DefaultScheduler : SchedulerCoroutineDispatcher(
   CORE_POOL_SIZE, MAX_POOL_SIZE,
   IDLE_WORKER_KEEP_ALIVE_NS, DEFAULT_SCHEDULER_NAME
) {
   ...
}

实际上是继承 SchedulerCoroutineDispatcher类型。详见1.5.1

1.5.1 SchedulerCoroutineDispatcher

internal open class SchedulerCoroutineDispatcher(
   private val corePoolSize: Int = CORE_POOL_SIZE,
   private val maxPoolSize: Int = MAX_POOL_SIZE,
   private val idleWorkerKeepAliveNs: Long = IDLE_WORKER_KEEP_ALIVE_NS,
   private val schedulerName: String = "CoroutineScheduler",
) : ExecutorCoroutineDispatcher() {
   override val executor: Executor
       get() = coroutineScheduler
   // This is variable for test purposes, so that we can reinitialize from clean state
   private var coroutineScheduler = createScheduler()
   private fun createScheduler() =
       //1. 详见1.5.2
       CoroutineScheduler(corePoolSize, maxPoolSize, idleWorkerKeepAliveNs, schedulerName)
   //2. 详见1.5.2
   override fun dispatch(context: CoroutineContext, block: Runnable): Unit
   = coroutineScheduler.dispatch(block)
   ...
}
//Executors.kt
//2. 实际上是继承ExecutorCoroutineDispatcher
public abstract class ExecutorCoroutineDispatcher: CoroutineDispatcher(), Closeable {
   ...
}
  • 可以看到实际上调用了CoroutineScheduler.dispatch方法。此时发现,第二个参数是Runnable类型的,而在1.4小节中,我们知道传入的是this也就是DispatchedContinuation,所以DispatchedContinuation继承的父类中,必定有继承了Runnable接口,而他的run方法的实现也在父类中,这块我们暂时按下不表,接着看继续跟踪coroutineScheduler.dispatch(block)

1.5.2 CoroutineScheduler

internal class CoroutineScheduler(
   @JvmField val corePoolSize: Int,
   @JvmField val maxPoolSize: Int,
   @JvmField val idleWorkerKeepAliveNs: Long = IDLE_WORKER_KEEP_ALIVE_NS,
   @JvmField val schedulerName: String = DEFAULT_SCHEDULER_NAME
) : Executor, Closeable {
...
   override fun execute(command: Runnable) = dispatch(command)
   fun dispatch(block: Runnable, taskContext: TaskContext = NonBlockingContext, tailDispatch: Boolean = false) {
       trackTask() // this is needed for virtual time support
       val task = createTask(block, taskContext)
       // try to submit the task to the local queue and act depending on the result
       val currentWorker = currentWorker()
       val notAdded = currentWorker.submitToLocalQueue(task, tailDispatch)
       if (notAdded != null) {
           if (!addToGlobalQueue(notAdded)) {
               // Global queue is closed in the last step of close/shutdown -- no more tasks should be accepted
               throw RejectedExecutionException("$schedulerName was terminated")
           }
       }
       val skipUnpark = tailDispatch && currentWorker != null
       // Checking 'task' instead of 'notAdded' is completely okay
       if (task.mode == TASK_NON_BLOCKING) {
           if (skipUnpark) return
           signalCpuWork()
       } else {
           // Increment blocking tasks anyway
           signalBlockingWork(skipUnpark = skipUnpark)
       }
   }
}
  • 该类继承了Executor类,而且它的构建参数可看到是线程池的参数,所以可以知道这个其实是Kotlin协程实现的一个线程池,具体就不跟进去了。

  • execute()过程也是dispatch过程:将任务投递到任务队列,然后通知线程去取任务执行,自此完成了线程切换动作。

  • 而在新线程里执行的Runnable为1.4中的调用代码:dispatcher.dispatch(context, this)中的this,也就是DispatchedContinuationDispatchedContinuation.kt并没有实现run方法,那么一定是他继承的父类实现了Runnable接口并实现,所以需要接着看它继承的父类:DispatchedTask类。

1.6 DispatchedTask.run()

internal abstract class DispatchedTask<in T>(
   @JvmField public var resumeMode: Int
) : SchedulerTask() {
...
   internal abstract val delegate: Continuation<T>
   @Suppress("UNCHECKED_CAST")
   internal open fun <T> getSuccessfulResult(state: Any?): T =
       state as T
   internal open fun getExceptionalResult(state: Any?): Throwable? =
       (state as? CompletedExceptionally)?.cause
   public final override fun run() {
       assert { resumeMode != MODE_UNINITIALIZED } // should have been set before dispatching
       val taskContext = this.taskContext
       var fatalException: Throwable? = null
       try {
           val delegate = delegate as DispatchedContinuation<T>
           //1. 取出代理商的续体
           val continuation = delegate.continuation
           withContinuationContext(continuation, delegate.countOrElement) {
               val context = continuation.context
               val state = takeState() // NOTE: Must take state in any case, even if cancelled
               val exception = getExceptionalResult(state)
               val job = if (exception == null && resumeMode.isCancellableMode) context[Job] else null
               if (job != null && !job.isActive) {
                   val cause = job.getCancellationException()
                   cancelCompletedResult(state, cause)
                   continuation.resumeWithStackTrace(cause)
               } else {
                   if (exception != null) {
                       continuation.resumeWithException(exception)
                   } else {
                       //1. 被包装的续体的resume方法,真正的开始出发其协程状态机代码。
                       continuation.resume(getSuccessfulResult(state))
                   }
               }
           }
       } catch (e: Throwable) {
           // This instead of runCatching to have nicer stacktrace and debug experience
           fatalException = e
       } finally {
           val result = runCatching { taskContext.afterTask() }
           handleFatalException(fatalException, result.exceptionOrNull())
       }
   }
}
  • delegate转为DispatchedContinuation,应该注意1.4 小节中DispatchedContinuation继承DispatchTask时,便对此delegate进行了复写:

override val delegate: Continuation

get() = this

而此delegate.continucation便是当初newDispatchedContinuation(this)时传入的this,此this就是Kotlin编译器一开始为协程体生成的SuspendLambda类型对象。具体可以回看1.3小节。

  • 调用了continuation.resume()方法触发了协程的状态机进而开始执行协程业务逻辑代码,结合之前1.5.2的分析可以知道,这个方法的调用已经是被dispatch到特定线程,完成线程切换后执行的。所以协程状态机的代码也是跑在新线程上的。

1.7 总结

至此,协程的线程调度分析结束,关键有如下几个要点:

  • 创建SuspendLambda时,他的协程上下文对象来自于comletion.context,默认就是Dispatcher.Default

  • SuspendLambda启动时调用了intercept()进行一层包装,得到DispatchedContinuation,后续协程启动是启动的DispatchedContinuation协程。

  • DispatchedContinuation继承于Runnable接口,协程启动时将自己投递到分发器dispatcher执行run方法,从而达到了线程切换效果。

  • DispatchedContinuationrun方法中,调用SuspendLambda.resume()启动状态机。在新线程执行协程状态机代码。

这一小节中,介绍了如何将协程调度到目的线程执行,接下来分析如何做到随意切换线程后,然后再恢复到原来线程的。

二、协程中的线程切换

在第一小节中,我们搞清楚了协程启动时,协程调度器是如何在其中起作用的。这一小节旨在剖析在协程用分发器切换线程执行新的挂起函数后,是如何切换会原来线程继续执行剩下的逻辑的。

为此,我们需要将1.1的测试代码反编译出来实际代码进而分析。

2.1 反编译代码

2.1.1 MainActivityonCreateonCreateonCreate1

final class MainActivity$onCreate$1 extends SuspendLambda implements Function2<CoroutineScope, Continuation<? super Unit>, Object> {
   ...
   @Override // kotlin.coroutines.jvm.internal.BaseContinuationImpl
   public final Object invokeSuspend(Object $result) {
       Object coroutine_suspended = IntrinsicsKt.getCOROUTINE_SUSPENDED();
       switch (this.label) {
           case 0:
               ResultKt.throwOnFailure($result);
               Log.d(MainActivity.TAG, LiveLiterals$MainActivityKt.INSTANCE.m4147xf96cab04());
               this.label = 1;
               //1. 新建编译器自动生成的继承于SuspendLambda的类型。
               AnonymousClass1 anonymousClass1 = new AnonymousClass1(null);
               //2. 调用withContext
           Object res = BuildersKt.withContext(Dispatchers.getIO(), anonymousClass1, this);
               if (res != coroutine_suspended) {
                   break;
               } else {
                   //挂起
                   return coroutine_suspended;
               }
           case 1:
               ResultKt.throwOnFailure($result);
               break;
           default:
               throw new IllegalStateException("call to 'resume' before 'invoke' with coroutine");
       }
       Log.d(MainActivity.TAG, LiveLiterals$MainActivityKt.INSTANCE.m4148xe0c1b328());
       return Unit.INSTANCE;
   }
}

根据之前的文章分析,这里suspend lambda 的类型都自动生成继承于SuspendLambda的类型。详见2.1.2。

anonymousClass1传入withContext,而且注意这里传入了this==MainActivity$onCreate$1,详见2.2。

2.1.2 AnonymousClass1

/* compiled from: MainActivity.kt */
public static final class AnonymousClass1 extends SuspendLambda implements Function2<CoroutineScope, Continuation<? super Integer>, Object> {
   int label
   ...
   @Override // kotlin.coroutines.jvm.internal.BaseContinuationImpl
   public final Object invokeSuspend(Object obj) {
       IntrinsicsKt.getCOROUTINE_SUSPENDED();
       switch (this.label) {
           case 0:
               ResultKt.throwOnFailure(obj);
               return Boxing.boxInt(Log.d(MainActivity.TAG, LiveLiterals$MainActivityKt.INSTANCE.m4146x7c0f011f()));
           default:
               throw new IllegalStateException("call to 'resume' before 'invoke' with coroutine");
       }
   }
}

2.2 withContext

public suspend fun <T> withContext(
   context: CoroutineContext,
   block: suspend CoroutineScope.() -> T
): T {
   contract {
       callsInPlace(block, InvocationKind.EXACTLY_ONCE)
   }
   //1. 获取当前协程, 注意这里的uCont就是当前续体,也就是MainActivity$onCreate$1
   return suspendCoroutineUninterceptedOrReturn sc@ { uCont ->
       //2. 计算获的新的协程上下文
       val oldContext = uCont.context
       val newContext = oldContext + context
       //3. 快速判断:新上下文和旧上下文一致的情况快速处理。
       // always check for cancellation of new context
       newContext.ensureActive()
       // FAST PATH #1 -- new context is the same as the old one
       if (newContext === oldContext) {
           val coroutine = ScopeCoroutine(newContext, uCont)
           return@sc coroutine.startUndispatchedOrReturn(coroutine, block)
       }
       // FAST PATH #2 -- the new dispatcher is the same as the old one (something else changed)
       // `equals` is used by design (see equals implementation is wrapper context like ExecutorCoroutineDispatcher)
       if (newContext[ContinuationInterceptor] == oldContext[ContinuationInterceptor]) {
           val coroutine = UndispatchedCoroutine(newContext, uCont)
           // There are changes in the context, so this thread needs to be updated
           withCoroutineContext(newContext, null) {
               return@sc coroutine.startUndispatchedOrReturn(coroutine, block)
           }
       }
       // SLOW PATH -- use new dispatcher
       //4. 新建一个DispatchedCoroutine
       val coroutine = DispatchedCoroutine(newContext, uCont)
       //5. 启动协程
       block.startCoroutineCancellable(coroutine, coroutine)
       coroutine.getResult()
   }
}
  • suspendCoroutineUninterceptedOrReturn这个函数直接步进是看不到实现的,它的实现是由Kotlin编译器生成的,它的作用是用来获取当前续体的,并且通过uCont返回,这里就是MainActivity$onCreate$1

  • 将旧协程上下文和新的上下文一起。计算得到最终的上下文。这里的context==Dispatchers.getIO()

  • 快速判断,不用看。

  • 新建一个DispatchedCoroutine,注意这里传入了新的协程上下文和当前续体对象。

  • 调用startCoroutineCancellable()启动协程。这里的同1.3.2小节分析一样,详见 2.2.1

2.2.1 startCoroutineCancellable

internal fun <R, T> (suspend (R) -> T).startCoroutineCancellable(
   receiver: R, completion: Continuation<T>,
   onCancellation: ((cause: Throwable) -> Unit)? = null
) =
   runSafely(completion) {
   //1. 创建SuspendLambda协程体
       createCoroutineUnintercepted(receiver, completion)
           //2. 拦截:取出分发器,并构建方法器Continuation。详见1.3.1
           .intercepted()
           //3. 调用方法器Continuation的resume方法,详见1.4
           .resumeCancellableWith(Result.success(Unit), onCancellation)
   }

此方法在之前1.3小节已经分析过,针对此此次调用,其中的改变是协程上下文中的分发器已经被设置为Dispatchers.Main

  • 创建了SuspendLambda对象,此对象的CoroutineContextcompletion.context。而其中的ContinuationInterceptor类型Element就是我们之前传入的Dispatchers.Main

  • 创建一个DispatchedContinuation

  • 将协程SuspendLambda的状态机逻辑通过Dispatcher.Main调度到主线程执行,调度过程参考第一下节。分发逻辑详见2.7小节。

  • SuspendLambda的状态机invokeSuspend()逻辑执行完成后,会返回到BaseContinuationImpl.resumeWith(),我们需要接此方法分析,来得到协程在切换到主线程执行后,又是怎么切回协程体1的执行线程的,详见2.3。

2.3 resumeWith

public final override fun resumeWith(result: Result<Any?>) {
       // This loop unrolls recursion in current.resumeWith(param) to make saner and shorter stack traces on resume
       var current = this
       var param = result
       while (true) {
           // Invoke "resume" debug probe on every resumed continuation, so that a debugging library infrastructure
           // can precisely track what part of suspended callstack was already resumed
           probeCoroutineResumed(current)
           with(current) {
               val completion = completion!! // fail fast when trying to resume continuation without completion
               val outcome: Result<Any?> =
                   try {
                       val outcome = invokeSuspend(param)
                       if (outcome === COROUTINE_SUSPENDED) return
                       Result.success(outcome)
                   } catch (exception: Throwable) {
                       Result.failure(exception)
                   }
               releaseIntercepted() // this state machine instance is terminating
               if (completion is BaseContinuationImpl) {
                   // unrolling recursion via loop
                   current = completion
                   param = outcome
               } else {
                   //1. 进入此判断
                   // top-level completion reached -- invoke and return
                   completion.resumeWith(outcome)
                   return
               }
           }
       }
   }

当状态机执行完后, 后进入到completion的类型判断,由2.2和2.2.1可以知道,当初传入的completion是DispatchedCoroutine类型,所以加入到else分支,调用了DispatchedCoroutine.resumeWith(),接下来分析此方法。

在此之前,我们需要看下DispatchedCoroutine的继承关系,详见2.4.1。如果想直接跟踪流程,可以直接看2.4.2。

2.4 DispatchedCoroutine

2.4.1 DispatchedCoroutine 的继承关系

internal class DispatchedCoroutine<in T>(
   context: CoroutineContext,
   uCont: Continuation<T>
) : ScopeCoroutine<T>(context, uCont) {
}

继承于ScopeCoroutine

internal open class ScopeCoroutine<in T>(
   context: CoroutineContext,
   @JvmField val uCont: Continuation<T> // unintercepted continuation
) : AbstractCoroutine<T>(context, true, true), CoroutineStackFrame {
}

继承于AbstractCoroutine

public abstract class AbstractCoroutine<in T>(
   parentContext: CoroutineContext,
   initParentJob: Boolean,
   active: Boolean
) : JobSupport(active), Job, Continuation<T>, CoroutineScope {
}

2.5 协程线程的恢复

2.5.1 AbstractCoroutine.resumeWith()

public final override fun resumeWith(result: Result<T>) {
       val state = makeCompletingOnce(result.toState())
       if (state === COMPLETING_WAITING_CHILDREN) return
       afterResume(state)
   }

调用了afterResume方法,此方法在DispatchedCoroutine类型有具体实现。见2.5.2

2.5.2 afterResume

//DispatchedCoroutine
override fun afterResume(state: Any?) {
       if (tryResume()) return // completed before getResult invocation -- bail out
       // Resume in a cancellable way because we have to switch back to the original dispatcher
       uCont.intercepted().resumeCancellableWith(recoverResult(state, uCont))
}
  • 取出当前续体uCont,这个续体根据之前的分析:2.2小节,可以知道它等于MainActivity$onCreate$1

  • intercepted():取出其分发 *

  • resumeCancellableWith:使用方法 * 协程体,将uCont续体的状态机逻辑调度到相对应的线程环境执行,这里就是之前的Dispatcher.Default。注意其注释:&ldquo;将其切换到原先的分发器&rdquo;。2⃣而这一过程其实和1.3小节的过程一致。

  • 恢复到Dispatcher.Default继续执行状态机时,由于label已经被更新,所以会往下继续执行,打印最后一句log。

2.6 总结

withContext(Dispatcher.Main)启动的协程时,取得当前协程续体uCount也就是MainActivity$onCreate$1,会计算出新的协程context,然后用它们创建一个DispatchedCoroutine

AnonymousClass1协程启动时,用DispatchedCoroutine作为completion参数,然后启动,此时会调度主线程执行协程。

当协程执行完成后,AnonymousClass1.resumeWith()方法会调用completion.resumeWith()

DispatchedCoroutine.resumeWith()方法会调用uCount.intercepted().resumeCancellableWith(),使得父协程进行调度并接着执行状态机逻辑。

2.7 Dispatchers.Main

@JvmStatic
   public actual val Main: MainCoroutineDispatcher get()
= MainDispatcherLoader.dispatcher

直接详见2.7.1

2.7.1 MainDispatcherLoader

internal object MainDispatcherLoader {
   private val FAST_SERVICE_LOADER_ENABLED = systemProp(FAST_SERVICE_LOADER_PROPERTY_NAME, true)
   @JvmField
   val dispatcher: MainCoroutineDispatcher = loadMainDispatcher()
   private fun loadMainDispatcher(): MainCoroutineDispatcher {
       return try {
           val factories = if (FAST_SERVICE_LOADER_ENABLED) {
               FastServiceLoader.loadMainDispatcherFactory()
           } else {
               // We are explicitly using the
               // `ServiceLoader.load(MyClass::class.java, MyClass::class.java.classLoader).iterator()`
               // form of the ServiceLoader call to enable R8 optimization when compiled on Android.
               // 1.获得MainDispatcherFactory的实现类
               ServiceLoader.load(
                       MainDispatcherFactory::class.java,
                       MainDispatcherFactory::class.java.classLoader
               ).iterator().asSequence().toList()
           }
           @Suppress("ConstantConditionIf")
           factories.maxByOrNull { it.loadPriority }?.tryCreateDispatcher(factories)
               ?: createMissingDispatcher()
       } catch (e: Throwable) {
           // Service loader can throw an exception as well
           createMissingDispatcher(e)
       }
   }
}
  • 通过ServiceLoad机制获取MainDispatcherFactory的实现类,而在源码里面,其实现类为AndroidDispatcherFactory

  • 调用tryCreateDispatcher()创建分发器,详见2.7.2。

2.7.2 AndroidDispatcherFactory

internal class AndroidDispatcherFactory : MainDispatcherFactory {
   override fun createDispatcher(allFactories: List<MainDispatcherFactory>) =
       HandlerContext(Looper.getMainLooper().asHandler(async = true))
   override fun hintOnError(): String = "For tests Dispatchers.setMain from kotlinx-coroutines-test module can be used"
   override val loadPriority: Int
       get() = Int.MAX_VALUE / 2
}

根据createDispatcher分发,主线程分发器的实现类为HandlerContext类型,传入用MainLooper构建的Handler。详见2.7.3。

2.7.3 HandlerContext

internal class HandlerContext private constructor(
   private val handler: Handler,
   private val name: String?,
   private val invokeImmediately: Boolean
) : HandlerDispatcher(), Delay {
   /**
    * Creates [CoroutineDispatcher] for the given Android [handler].
    *
    * @param handler a handler.
    * @param name an optional name for debugging.
    */
   constructor(
       handler: Handler,
       name: String? = null
   ) : this(handler, name, false)
   @Volatile
   private var _immediate: HandlerContext? = if (invokeImmediately) this else null
   override val immediate: HandlerContext = _immediate ?:
       HandlerContext(handler, name, true).also { _immediate = it }
   override fun isDispatchNeeded(context: CoroutineContext): Boolean {
       return !invokeImmediately || Looper.myLooper() != handler.looper
   }
   override fun dispatch(context: CoroutineContext, block: Runnable) {
       if (!handler.post(block)) {
           cancelOnRejection(context, block)
       }
   }
   override fun scheduleResumeAfterDelay(timeMillis: Long, continuation: CancellableContinuation<Unit>) {
       val block = Runnable {
           with(continuation) { resumeUndispatched(Unit) }
       }
       if (handler.postDelayed(block, timeMillis.coerceAtMost(MAX_DELAY))) {
           continuation.invokeOnCancellation { handler.removeCallbacks(block) }
       } else {
           cancelOnRejection(continuation.context, block)
       }
   }
  ...
}

HandlerContext继承于HandlerDispatcher,而他的dispatch方法,可以看到,就是将block丢到设置MainLooperhandler执行。所以续体将会在主线程执行状态机,达到切换到主线程执行协程的目的。

来源:https://juejin.cn/post/7175783679993020453

0
投稿

猜你喜欢

手机版 软件编程 asp之家 www.aspxhome.com