Java遗传算法之冲出迷宫
作者:mengwei 发布时间:2022-01-12 21:34:58
标签:java,遗传算法
遗传算法是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。它能解决很多问题,比如数学方程的最大最小值,背包问题,装箱问题等。在游戏开发中遗传算法的应用也十分频繁,不少的游戏 AI 都利用遗传算法进行编码。
就个人理解,遗传算法是模拟神奇的大自然中生物“优胜劣汰”原则指导下的进化过程,好的基因有更多的机会得到繁衍,这样一来,随着繁衍的进行,生物种群会朝着一个趋势收敛。而生物繁衍过程中的基因杂交和变异会给种群提供更好的基因序列,这样种群的繁衍趋势将会是“长江后浪推前浪,一代更比一代强”,而不会是只受限于祖先的最好基因。而程序可以通过模拟这种过程来获得问题的最优解(但不一定能得到)。要利用该过程来解决问题,受限需要构造初始的基因组,并为对每个基因进行适应性分数(衡量该基因的好坏程度)初始化,接着从初始的基因组中选出两个父基因(根据适应性分数,采用轮盘算法进行选择)进行繁衍,基于一定的杂交率(父基因进行杂交的概率)和变异率(子基因变异的概率),这两个父基因会生成两个子基因,然后将这两个基因放入种群中,到这里繁衍一代完成,重复繁衍的过程直到种群收敛或适应性分数达到最大。
接下来我们就看看用遗传算法冲出迷宫的实例。
代码如下:
import java.awt.Color;
import java.awt.Graphics;
import java.awt.GridLayout;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
@SuppressWarnings("serial")
public class MazeProblem extends JFrame{
//当前基因组
private static List<Gene> geneGroup = new ArrayList<>();
private static Random random = new Random();
private static int startX = 2;
private static int startY = 0;
private static int endX = 7;
private static int endY = 14;
//杂交率
private static final double CROSSOVER_RATE = 0.7;
//变异率
private static final double MUTATION_RATE = 0.0001;
//基因组初始个数
private static final int POP_SIZE = 140;
//基因长度
private static final int CHROMO_LENGTH = 70;
//最大适应性分数的基因
private static Gene maxGene = new Gene(CHROMO_LENGTH);
//迷宫地图
private static int[][] map = {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1},
{1,0,1,0,0,0,0,0,1,1,1,0,0,0,1},
{5,0,0,0,0,0,0,0,1,1,1,0,0,0,1},
{1,0,0,0,1,1,1,0,0,1,0,0,0,0,1},
{1,0,0,0,1,1,1,0,0,0,0,0,1,0,1},
{1,1,0,0,1,1,1,0,0,0,0,0,1,0,1},
{1,0,0,0,0,1,0,0,0,0,1,1,1,0,1},
{1,0,1,1,0,0,0,1,0,0,0,0,0,0,8},
{1,0,1,1,0,0,0,1,0,0,0,0,0,0,1},
{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}};
private static int MAP_WIDTH = 15;
private static int MAP_HEIGHT = 10;
private List<JLabel> labels = new ArrayList<>();
public MazeProblem(){
// 初始化
setSize(700, 700);
setDefaultCloseOperation(DISPOSE_ON_CLOSE);
setResizable(false);
getContentPane().setLayout(null);
JPanel panel = new JPanel();
panel.setLayout(new GridLayout(MAP_HEIGHT,MAP_WIDTH));
panel.setBounds(10, 10, MAP_WIDTH*40, MAP_HEIGHT*40);
getContentPane().add(panel);
for(int i=0;i<MAP_HEIGHT;i++){
for(int j=0;j<MAP_WIDTH;j++){
JLabel label = new JLabel();
Color color = null;
if(map[i][j] == 1){
color = Color.black;
}
if(map[i][j] == 0){
color = Color.GRAY;
}
if(map[i][j] == 5 || map[i][j] ==8){
color = Color.red;
}
label.setBackground(color);
label.setOpaque(true);
panel.add(label);
labels.add(label);
}
}
}
@Override
public void paint(Graphics g) {
super.paint(g);
//画出路径
int[] gene = maxGene.getGene();
int curX = startX;
int curY = startY;
for(int i=0;i<gene.length;i+=2){
//上
if(gene[i] == 0 && gene[i+1] == 0){
if(curX >=1 && map[curX-1][curY] == 0){
curX --;
}
}
//下
else if(gene[i] == 0 && gene[i+1] == 1){
if(curX <=MAP_HEIGHT-1 && map[curX+1][curY] == 0){
curX ++;
}
}
//左
else if(gene[i] == 1 && gene[i+1] == 0){
if(curY >=1 && map[curX][curY-1] == 0){
curY --;
}
}
//右
else{
if(curY <= MAP_WIDTH-1 && map[curX][curY+1] == 0){
curY ++;
}
}
labels.get(curX*MAP_WIDTH+curY).setBackground(Color.BLUE);
}
}
public static void main(String[] args) {
//初始化基因组
init();
while(maxGene.getScore() < 1){
//选择进行交配的两个基因
int p1 = getParent(geneGroup);
int p2 = getParent(geneGroup);
//用轮盘转动法选择两个基因进行交配,杂交和变异
mate(p1,p2);
}
new MazeProblem().setVisible(true);
}
/**
* 根据路径获得适应性分数
* @param path
* @return
*/
private static double getScore(int[] gene){
double result = 0;
int curX = startX;
int curY = startY;
for(int i=0;i<gene.length;i+=2){
//上
if(gene[i] == 0 && gene[i+1] == 0){
if(curX >=1 && map[curX-1][curY] == 0){
curX --;
}
}
//下
else if(gene[i] == 0 && gene[i+1] == 1){
if(curX <=MAP_HEIGHT-1 && map[curX+1][curY] == 0){
curX ++;
}
}
//左
else if(gene[i] == 1 && gene[i+1] == 0){
if(curY >=1 && map[curX][curY-1] == 0){
curY --;
}
}
//右
else{
if(curY <= MAP_WIDTH-1 && map[curX][curY+1] == 0){
curY ++;
}
}
}
double x = Math.abs(curX - endX);
double y = Math.abs(curY - endY);
//如果和终点只有一格距离则返回1
if((x == 1&& y==0) || (x==0&&y==1)){
return 1;
}
//计算适应性分数
result = 1/(x+y+1);
return result;
}
/**
* 基因初始化
*/
private static void init(){
for(int i=0;i<POP_SIZE;i++){
Gene gene = new Gene(CHROMO_LENGTH);
double score = getScore(gene.getGene());
if(score > maxGene.getScore()){
maxGene = gene;
}
gene.setScore(score);
geneGroup.add(gene);
}
}
/**
* 根据适应性分数随机获得进行交配的父类基因下标
* @param list
* @return
*/
private static int getParent(List<Gene> list){
int result = 0;
double r = random.nextDouble();
double score;
double sum = 0;
double totalScores = getTotalScores(geneGroup);
for(int i=0;i<list.size();i++){
Gene gene = list.get(i);
score = gene.getScore();
sum += score/totalScores;
if(sum >= r){
result = i;
return result;
}
}
return result;
}
/**
* 获得全部基因组的适应性分数总和
* @param list
* @return
*/
private static double getTotalScores(List<Gene> list){
double result = 0;
for(int i=0;i<list.size();i++){
result += list.get(i).getScore();
}
return result;
}
/**
* 两个基因进行交配
* @param p1
* @param p2
*/
private static void mate(int n1,int n2){
Gene p1 = geneGroup.get(n1);
Gene p2 = geneGroup.get(n2);
Gene c1 = new Gene(CHROMO_LENGTH);
Gene c2 = new Gene(CHROMO_LENGTH);
int[] gene1 = new int[CHROMO_LENGTH];
int[] gene2 = new int[CHROMO_LENGTH];
for(int i=0;i<CHROMO_LENGTH;i++){
gene1[i] = p1.getGene()[i];
gene2[i] = p2.getGene()[i];
}
//先根据杂交率决定是否进行杂交
double r = random.nextDouble();
if(r >= CROSSOVER_RATE){
//决定杂交起点
int n = random.nextInt(CHROMO_LENGTH);
for(int i=n;i<CHROMO_LENGTH;i++){
int tmp = gene1[i];
gene1[i] = gene2[i];
gene2[i] = tmp;
}
}
//根据变异率决定是否
r = random.nextDouble();
if(r >= MUTATION_RATE){
//选择变异位置
int n = random.nextInt(CHROMO_LENGTH);
if(gene1[n] == 0){
gene1[n] = 1;
}
else{
gene1[n] = 0;
}
if(gene2[n] == 0){
gene2[n] = 1;
}
else{
gene2[n] = 0;
}
}
c1.setGene(gene1);
c2.setGene(gene2);
double score1 = getScore(c1.getGene());
double score2 = getScore(c2.getGene());
if(score1 >maxGene.getScore()){
maxGene = c1;
}
if(score2 >maxGene.getScore()){
maxGene = c2;
}
c1.setScore(score1);
c2.setScore(score2);
geneGroup.add(c1);
geneGroup.add(c2);
}
}
/**
* 基因
* @author ZZF
*
*/
class Gene{
//染色体长度
private int len;
//基因数组
private int[] gene;
//适应性分数
private double score;
public Gene(int len){
this.len = len;
gene = new int[len];
Random random = new Random();
//随机生成一个基因序列
for(int i=0;i<len;i++){
gene[i] = random.nextInt(2);
}
//适应性分数设置为0
this.score = 0;
}
public int getLen() {
return len;
}
public void setLen(int len) {
this.len = len;
}
public int[] getGene() {
return gene;
}
public void setGene(int[] gene) {
this.gene = gene;
}
public double getScore() {
return score;
}
public void setScore(double score) {
this.score = score;
}
public void print(){
StringBuilder sb = new StringBuilder();
for(int i=0;i<gene.length;i+=2){
if(gene[i] == 0 && gene[i+1] == 0){
sb.append("上");
}
//下
else if(gene[i] == 0 && gene[i+1] == 1){
sb.append("下");
}
//左
else if(gene[i] == 1 && gene[i+1] == 0){
sb.append("左");
}
//右
else{
sb.append("右");
}
}
System.out.println(sb.toString());
}
}
来源:https://www.2cto.com/kf/201706/649186.html


猜你喜欢
- 本文实例为大家分享了android自定义Camera实现录像和拍照的具体代码,供大家参考,具体内容如下源码:package com.exam
- 前言上一篇我们介绍了 Animation 和 AnimationController 的使用,这是最
- @[toc]在之前的文章中松哥和小伙伴们聊过,正在执行的流程信息是保存在以 ACT_RU_ 为前缀的表中,执行完毕的流程
- AOP概念的引入传统的登录原理:如上图所示这是一个基本的登录原理图,但是如果我们想要在这个登录之上添加一些新的功能,比如权限校验那么我们能想
- 第1部分 TreeSet介绍TreeSet简介TreeSet 是一个有序的集合,它的作用是提供有序的Set集合。它继承于AbstractSe
- 前言在上一篇通知服务NotificationListenerService使用方法 中,我们已经介绍了如何使用NotificationLis
- 1、匿名内部类内部类:在一个类的内部定义了另外的类,称为内部类,匿名内部类指的是没有名字的内部类。为了清楚内部类的主要作用,下面首先观察一个
- 写在前面之前想尝试把JWT和Shiro结合到一起,但是在网上查了些博客,也没太有看懂,所以就自己重新研究了一下Shiro的工作机制,然后自己
- 一、Spinner的两种展示样式下拉列表的展示方式有两种,一种是在当前下拉框的正下方展示列表,此时把spinnerMode属性设置为drop
- 前言废话不多说直接开始老规矩,文章最后有源码完成效果图棋子加渐变色棋子不加渐变色一、测量1.获取宽高 @Override protected
- 不说废话了,进入我们今天的主题吧。先贴上前面内容的地址:Android手势ImageView三部曲(一)Android手势ImageView
- c#调用surfer软件,添加应用的方法:1.在项目文件上右键->添加引用2.选择COM标签页3.找到Surfer 9 type li
- 引入dll 本次程序中引入的是Spire.Pdf.dll,引入方法如下:【方法1】通过NuGet安装。可以在Visual Stud
- 1.sleep() 使当前线程(即调用该方法的线程)暂停执行一段时间,让其他线程有机会继续执行,但它并不释放对象锁。也就是如果有Synchr
- 定义: SharedPreferences
- 前言最近在学习Kotlin这门语言,在项目开发中,运用到了单例模式。因为其表达方式与Java是不同的。所以对不同单例模式的实现进行了分别探讨
- 继承是面向对象程序设计中最重要的概念之一。继承允许我们根据一个类来定义另一个类,这使得创建和维护应用程序变得更容易。同时也有利于重用代码和节
- 建造者模式是Java中一种创建型设计模式,它的主要目的是将一个复杂对象的构建过程分解为多个简单对象的构建过程,并且使这些构建过程按照一定的顺
- 一、项目简述本系统功能包括:通知公告,老人管理,护工管理,问答管理等等功能。二、项目运行环境配置: Jdk1.8 + Tomcat8.5 +
- 使用ByteArrayOutputStream下载文件//文件名称String filepath = ServletActionContex