软件编程
位置:首页>> 软件编程>> java编程>> Java数据结构之线段树中的懒操作详解

Java数据结构之线段树中的懒操作详解

作者:chengqiuming  发布时间:2021-08-20 00:21:52 

标签:Java,线段树,懒操作

一、问题提出

对于线段树,若要求对区间中的所有点都进行更新,可以引入懒操作。

懒操作包括区间更新和区间查询操作。

二、区间更新

对 [l,r] 区间进行更新,例如将 [l,r] 区间所有元素都更新为 v,步骤如下。

1.若当前节点区间被查询区间[l,r]覆盖,则仅对该节点进行更新并做懒标记,表示该节点已被更新,对该节点的子节点暂不更新。

2.判断是在左子树中查询还是在右子树中查询。在查询过程中,若当前节点带有懒标记,则将懒标记传给子节点(将当前节点的懒标记清除,将子节点更新并做懒标记),继续查找。

3.在返回时更新最值。

三、区间查询

带有懒标记的区间查询和普通的区间查询有所不同,在查询过程中若遇到节点有懒标记,则下传懒标记,继续查询。

四、实战

1.问题描述

Java数据结构之线段树中的懒操作详解

2.输入

10
5 3 7 2 12 1 6 4 8 15
3 7 25
1 10

3.代码

package com.platform.modules.alg.alglib.p85;

public class P85 {
   public String output = "";

private final int maxn = 100005;
   private final int inf = 0x3f3f3f3f;
   private int n;
   private int a[] = new int[maxn];
   private node tree[] = new node[maxn * 4]; // 树结点存储数组

public P85() {
       for (int i = 0; i < tree.length; i++) {
           tree[i] = new node();
       }
   }

void lazy(int k, int v) {
       tree[k].mx = v; // 更新最值
       tree[k].lz = v; // 做懒标记
   }

// 向下传递懒标记
   void pushdown(int k) {
       lazy(2 * k, tree[k].lz); // 传递给左孩子
       lazy(2 * k + 1, tree[k].lz); // 传递给右孩子
       tree[k].lz = -1; // 清除自己的懒标记
   }

// 创建线段树,k表示存储下标,区间[l,r]
   void build(int k, int l, int r) {
       tree[k].l = l;
       tree[k].r = r;
       tree[k].lz = -1; // 初始化懒操作
       if (l == r) {
           tree[k].mx = a[l];
           return;
       }
       int mid, lc, rc;
       mid = (l + r) / 2; // 划分点
       lc = k * 2; // 左孩子存储下标
       rc = k * 2 + 1; // 右孩子存储下标
       build(lc, l, mid);
       build(rc, mid + 1, r);
       tree[k].mx = Math.max(tree[lc].mx, tree[rc].mx); // 结点的最大值等于左右孩子最值的最大值
   }

// 将区间 [l,r] 修改更新为 v
   void update(int k, int l, int r, int v) {
       // 找到该区间
       if (tree[k].l >= l && tree[k].r <= r) {
           lazy(k, v); // 更新并做懒标记
           return;
       }
       if (tree[k].lz != -1)
           pushdown(k); // 懒标记下移
       int mid, lc, rc;
       mid = (tree[k].l + tree[k].r) / 2; // 划分点
       lc = k * 2; // 左孩子存储下标
       rc = k * 2 + 1; // 右孩子存储下标
       if (l <= mid)
           update(lc, l, r, v); // 到左子树更新
       if (r > mid)
           update(rc, l, r, v);// 到右子树更新
       tree[k].mx = Math.max(tree[lc].mx, tree[rc].mx); // 返回时修改更新最值
   }

// 求区间 [l,r] 的最值
   int query(int k, int l, int r) {
       int Max = -inf;
       if (tree[k].l >= l && tree[k].r <= r) // 找到该区间
           return tree[k].mx;
       if (tree[k].lz != -1)
           pushdown(k); // 懒标记下移
       int mid, lc, rc;
       mid = (tree[k].l + tree[k].r) / 2; // 划分点
       lc = k * 2; // 左孩子存储下标
       rc = k * 2 + 1; // 右孩子存储下标
       if (l <= mid)
           Max = Math.max(Max, query(lc, l, r)); // 到左子树查询
       if (r > mid)
           Max = Math.max(Max, query(rc, l, r)); // 到右子树查询
       return Max;
   }

public String cal(String input) {
       int l, r;
       int i, v;
       String[] line = input.split("\n");
       n = Integer.parseInt(line[0]); // 第 1 行:10
       String[] nums = line[1].split(" ");

// 第 2 行:5 3 7 2 12 1 6 4 8 15
       for (i = 1; i <= n; i++)
           a[i] = Integer.parseInt(nums[i - 1]);
       build(1, 1, n); // 创建线段树
       // 输入查询最值的区间 [l,r] 1 10
       String[] range = line[2].split(" ");
       l = Integer.parseInt(range[0]);
       r = Integer.parseInt(range[1]);
       // 求区间[l..r]的最值
       output += query(1, l, r) + "\n";
       // 输入更新的区间值 l r v  第 3 行: 3 7 25
       String[] change = line[3].split(" ");
       l = Integer.parseInt(change[0]);
       r = Integer.parseInt(change[1]);
       v = Integer.parseInt(change[2]);
       // 将区间 [l,r] 修改更新为 v
       update(1, l, r, v);
       // 求区间[l..r]的最值 第 4 行:1 10
       range = line[4].split(" ");
       l = Integer.parseInt(range[0]);
       r = Integer.parseInt(range[1]);
       // 求区间 [l..r] 的最值
       output += query(1, l, r) + "\n";
       return output;
   }
}

// 结点
class node {
   int l; // l 表示区间左右端点
   int r; // r 表示区间左右端点
   int mx; // mx表示区间[l,r]的最值
   int lz; // lz 懒标记
}

4.测试

Java数据结构之线段树中的懒操作详解

来源:https://blog.csdn.net/chengqiuming/article/details/127150347

0
投稿

猜你喜欢

手机版 软件编程 asp之家 www.aspxhome.com