详解GaussDB for MySQL性能优化
作者:华为云开发者社区 发布时间:2024-01-25 15:10:18
背景
我们先来看看MySQL 8.0的事务提交的大致流程
以上流程,是MySQL8.0对WAL原则的一种实现,这个流程意味着,任何一个事务的提交,一定要完成write buffer和flush to disk流程。
然而那么这个流程中,有一个问题:每个服务器的CPU是有限的,服务器能处理的Thread也是有上限的,那么当我们的业务的并发数量,远远大于我们服务器能并行处理的数量时,那么后来的事务,只能等待前面的事务提交后才能被处理。在这之前,他们什么也做不了。因此,在大并发场景下,如何进一步提升线程的使用率,是大并发事物写入的一个关键。
灵感来源于生活
一个优化,并不是凭空想象出来的,有时候,往往来源于现实生活。下面,我们先来看看我们身边,和事务提交流程非常类似的一个例子:快递。
现在的快递配送,一般一个快递员会负责一片区域,快递刚开始兴起时,数量不多,那么一个快递员基本上可以在规定时间内完成配送。
但是,随着快递数量越来越多,一个快递员要在一个小区配送很长的时间,才能到下一个小区,常常导致了快递员无法准时的配送。在这个问题的催动下,随后,一个新的行业开始出现 – 快递驿站。
快递的优化原理
接下来,让我们来看下,快递驿站究竟解决了什么问题。
快递的配送过程中,最耗时的,不是装货,不是卸货,而是电话和等待。配送一个小区的时间,取决于这个最后一个来取快递的人的时间,在最后一个人取完快递钱,快递员除了打电话,做不了其他任何事情(也没有办法通知下一个小区的人,因为最后一个人来取得时间是无法确定的)。那么这个等待的时间,对于快递员来说,就是一种浪费。
快递驿站可以很大程度解决这个问题,快递员到了以后,只需要将快递卸货,即可前往下一个小区,剩下的事情,就可以由驿站的人员来完成,大大提升了快递员的配送效率。
分析
回过头来,我们看看数据库,如果把Transaction线程看做快递员,存储上的文件看做取快递的人,那么我们会发现两者有非常大的相似性。那么我们可以像快递配送优化那样去优化事务的处理流程吗?答案是可以的。
根据快递驿站的优化原理,我们知道,快递驿站帮快递员免去了等待客户取货的时间,那么事务处理过程中,有没有等待的过程呢?答案是有的,存储的IO就是一个较长的等待。数据库使用经验丰富的开发人员来都知道,等待redo日志写入存储的磁盘IO性能,很大程度上决定了数据库的写入性能。对于现代数据库来说,尤其对于GaussDB(for MySQL)这样计算于存储分离的数据库,存储的IO耗时,在事务处理的总耗时中,占据了不小的比例,虽然有log buffer的合并写入,提升并 * 况下的整体吞吐,但是如果在等待IO的这段时间中,这些线程能够去做别的事情(例如处理等待中的其他事务)。那么将会有进一步的性能提升。
GaussDB(for MySQL)的优化
既然找到了等待的点,那么我们就可以像快递配送的优化方法,为数据库,也创造一个“快递驿站”,让“快递驿站”来做等待的事情,而事务线程就可以去处理其他等待中的事务,让CPU不会“闲下来”。
如图5所示,GaussDB(for MySQL)当redo日志的flush to disk动作完成后,即可进行事务提交,但是此时并不应答客户端,而是直接处理下一个事务。同时使用少量”post comit worker线程”,来批量等待日志写入完成(等待的过程其实并不占用CPU),并应答客户端,这就可以让“等待”和“下一个事务的处理”并行化,让CPU“闲不下来”。
实际测试
根据实际测试,在标准的sysbench写入模型下,没有使用Post Commit时,极限性能是35万QPS左右,而使用Post commit后,可以到大42万以上的QPS,提升了20%的写入性能。
来源:https://www.cnblogs.com/huaweiyun/p/13223531.html


猜你喜欢
- 案例描述在定时脚本运行过程中,发现当备份表格的sql语句与删除该表部分数据的sql语句同时运行时,mysql会检测出死锁,并打印出日志。两
- 前言SQL 语言无处不在。SQL 已经不仅仅是技术人员的专属技能了,似乎人人都会写SQL,就如同人人都是产品经理一样。如果你是做后台开发的,
- 迭代器即可以遍历诸如列表,字典及字符串等序列对象甚至自定义对象的对象,其本质就是记录迭代对象中每个元素的位置。迭代过程从第一个元素至最后一个
- 前言随着深度学习的不断发展,从开山之作Alexnet到VGG,网络结构不断优化,但是在VGG网络研究过程中,人们发现随着网络深度的不断提高,
- Pygame是一组跨平台的 Python 模块,专为编写视频游戏而设计。它包括旨在与 Python 编程语言一起使用的计算机图形和声音库。您
- 傅里叶变换图像处理一般分为空间域处理和频率域处理。空间域处理是直接对图像内的像素进行处理。空间域处理主要划分为灰度变换和空间滤波两种形式。灰
- 目录一、Python字典1.什么是字典2.字典的创建方式2.1 通过其他字典创建2.2 通过关键字参数创建2.3 通过键值对的序列创建2.4
- 我就废话不多说了,还是直接上代码吧! url = "http://%s:%s/api-token-auth/" % (i
- 前言本文主要给大家介绍的是关于PHP/ThinkPHP实现批量打包下载文件的相关内容,分享出来供大家参考学习,话不多说了,来一起看看详细的介
- 其实r 是只读,只能读不能写,这是很明确的,但是r+是可读写,变成r+后还没太明白到底加了什么,还是照样写不了,有没有这样的体验呢,如下代码
- 前言存储过程(Stored Procedure):一组可编程的函数,是为了完成特定功能的SQL语句集,经编译创建并保存在数据库中,用户可通过
- 前言图像分割是许多计算机视觉应用中的关键处理步骤,通常用于将图像划分为不同的区域,这些区域常常对应于真实世界的对象。因此,图像分割是图像识别
- 转眼间上次写文章已经是 2022年12月15日的事情啦,本来从2022年7月份开始写作之后保持着每周一篇,然而从12月15日后断更了这么久,
- [Q]怎么样查询特殊字符,如通配符%与_ [Q]如何插入单引号到数据库表中 [Q]怎样设置事务一致性 [Q]怎么样利用光标更新数据 [Q]怎
- 本文实例讲述了JS实现动画兼容性的transition和transform方法。分享给大家供大家参考,具体如下:今天在开发纯手工js打造图片
- 我就废话不多说了,大家还是直接看代码吧!#加载keras模块from __future__ import print_functionimp
- 最近分别用vue和Android实现了一个券码复制功能,长按券码会在上方弹出一个拷贝的icon提示,点击icon将券码内容复制到剪贴板。现将
- 图片缩放会失真是真理,在浏览器里也一样,貌似使用传说中的双三次插值可以让失真看起来比较不明显,但是真的想不通IE7已经实现了,却不默认打开,
- 1、最优化与线性规划最优化问题的三要素是决策变量、目标函数和约束条件。线性规划(Linear programming),是研究线性约束条件下
- expand表示是否把series类型转化为DataFrame类型下面代码中的n表示去掉下划线"_"的数量代码如下:im