用实例详解Python中的Django框架中prefetch_related()函数对数据库查询的优化
作者:CuGBabyBeaR 发布时间:2024-01-19 08:47:12
实例的背景说明
假定一个个人信息系统,需要记录系统中各个人的故乡、居住地、以及到过的城市。数据库设计如下:
Models.py 内容如下:
from django.db import models
class Province(models.Model):
name = models.CharField(max_length=10)
def __unicode__(self):
return self.name
class City(models.Model):
name = models.CharField(max_length=5)
province = models.ForeignKey(Province)
def __unicode__(self):
return self.name
class Person(models.Model):
firstname = models.CharField(max_length=10)
lastname = models.CharField(max_length=10)
visitation = models.ManyToManyField(City, related_name = "visitor")
hometown = models.ForeignKey(City, related_name = "birth")
living = models.ForeignKey(City, related_name = "citizen")
def __unicode__(self):
return self.firstname + self.lastname
注1:创建的app名为“QSOptimize”
注2:为了简化起见,`qsoptimize_province` 表中只有2条数据:湖北省和广东省,`qsoptimize_city`表中只有三条数据:武汉市、十堰市和广州市
prefetch_related()
对于多对多字段(ManyToManyField)和一对多字段,可以使用prefetch_related()来进行优化。或许你会说,没有一个叫OneToManyField的东西啊。实际上 ,ForeignKey就是一个多对一的字段,而被ForeignKey关联的字段就是一对多字段了。
作用和方法
prefetch_related()和select_related()的设计目的很相似,都是为了减少SQL查询的数量,但是实现的方式不一样。后者是通过JOIN语句,在SQL查询内解决问题。但是对于多对多关系,使用SQL语句解决就显得有些不太明智,因为JOIN得到的表将会很长,会导致SQL语句运行时间的增加和内存占用的增加。若有n个对象,每个对象的多对多字段对应Mi条,就会生成Σ(n)Mi 行的结果表。
prefetch_related()的解决方法是,分别查询每个表,然后用Python处理他们之间的关系。继续以上边的例子进行说明,如果我们要获得张三所有去过的城市,使用prefetch_related()应该是这么做:
>>> zhangs = Person.objects.prefetch_related('visitation').get(firstname=u"张",lastname=u"三")
>>> for city in zhangs.visitation.all() :
... print city
...
上述代码触发的SQL查询如下:
SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`,
`QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`
FROM `QSOptimize_person`
WHERE (`QSOptimize_person`.`lastname` = '三' AND `QSOptimize_person`.`firstname` = '张');
SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`,
`QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
FROM `QSOptimize_city`
INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`)
WHERE `QSOptimize_person_visitation`.`person_id` IN (1);
第一条SQL查询仅仅是获取张三的Person对象,第二条比较关键,它选取关系表`QSOptimize_person_visitation`中`person_id`为张三的行,然后和`city`表内联(INNER JOIN 也叫等值连接)得到结果表。
+----+-----------+----------+-------------+-----------+
| id | firstname | lastname | hometown_id | living_id |
+----+-----------+----------+-------------+-----------+
| 1 | 张 | 三 | 3 | 1 |
+----+-----------+----------+-------------+-----------+
1 row in set (0.00 sec)
+-----------------------+----+-----------+-------------+
| _prefetch_related_val | id | name | province_id |
+-----------------------+----+-----------+-------------+
| 1 | 1 | 武汉市 | 1 |
| 1 | 2 | 广州市 | 2 |
| 1 | 3 | 十堰市 | 1 |
+-----------------------+----+-----------+-------------+
3 rows in set (0.00 sec)
显然张三武汉、广州、十堰都去过。
又或者,我们要获得湖北的所有城市名,可以这样:
>>> hb = Province.objects.prefetch_related('city_set').get(name__iexact=u"湖北省")
>>> for city in hb.city_set.all():
... city.name
...
触发的SQL查询:
SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`name` LIKE '湖北省' ;
SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
FROM `QSOptimize_city`
WHERE `QSOptimize_city`.`province_id` IN (1);
得到的表:
+----+-----------+
| id | name |
+----+-----------+
| 1 | 湖北省 |
+----+-----------+
1 row in set (0.00 sec)
+----+-----------+-------------+
| id | name | province_id |
+----+-----------+-------------+
| 1 | 武汉市 | 1 |
| 3 | 十堰市 | 1 |
+----+-----------+-------------+
2 rows in set (0.00 sec)
我们可以看见,prefetch使用的是 IN 语句实现的。这样,在QuerySet中的对象数量过多的时候,根据数据库特性的不同有可能造成性能问题。
使用方法
*lookups 参数
prefetch_related()在Django < 1.7 只有这一种用法。和select_related()一样,prefetch_related()也支持深度查询,例如要获得所有姓张的人去过的省:
>>> zhangs = Person.objects.prefetch_related('visitation__province').filter(firstname__iexact=u'张')
>>> for i in zhangs:
... for city in i.visitation.all():
... print city.province
...
触发的SQL:
SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`,
`QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`
FROM `QSOptimize_person`
WHERE `QSOptimize_person`.`firstname` LIKE '张' ;
SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`,
`QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` FROM `QSOptimize_city`
INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`)
WHERE `QSOptimize_person_visitation`.`person_id` IN (1, 4);
SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` IN (1, 2);
获得的结果:
+----+-----------+----------+-------------+-----------+
| id | firstname | lastname | hometown_id | living_id |
+----+-----------+----------+-------------+-----------+
| 1 | 张 | 三 | 3 | 1 |
| 4 | 张 | 六 | 2 | 2 |
+----+-----------+----------+-------------+-----------+
2 rows in set (0.00 sec)
+-----------------------+----+-----------+-------------+
| _prefetch_related_val | id | name | province_id |
+-----------------------+----+-----------+-------------+
| 1 | 1 | 武汉市 | 1 |
| 1 | 2 | 广州市 | 2 |
| 4 | 2 | 广州市 | 2 |
| 1 | 3 | 十堰市 | 1 |
+-----------------------+----+-----------+-------------+
4 rows in set (0.00 sec)
+----+-----------+
| id | name |
+----+-----------+
| 1 | 湖北省 |
| 2 | 广东省 |
+----+-----------+
2 rows in set (0.00 sec)
值得一提的是,链式prefetch_related会将这些查询添加起来,就像1.7中的select_related那样。
要注意的是,在使用QuerySet的时候,一旦在链式操作中改变了数据库请求,之前用prefetch_related缓存的数据将会被忽略掉。这会导致Django重新请求数据库来获得相应的数据,从而造成性能问题。这里提到的改变数据库请求指各种filter()、exclude()等等最终会改变SQL代码的操作。而all()并不会改变最终的数据库请求,因此是不会导致重新请求数据库的。
举个例子,要获取所有人访问过的城市中带有“市”字的城市,这样做会导致大量的SQL查询:
plist = Person.objects.prefetch_related('visitation')
[p.visitation.filter(name__icontains=u"市") for p in plist]
因为数据库中有4人,导致了2+4次SQL查询:
SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`,
`QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`
FROM `QSOptimize_person`;
SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`,
`QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
FROM `QSOptimize_city`
INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`)
WHERE `QSOptimize_person_visitation`.`person_id` IN (1, 2, 3, 4);
SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
FROM `QSOptimize_city`
INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`)
WHERE(`QSOptimize_person_visitation`.`person_id` = 1 AND `QSOptimize_city`.`name` LIKE '%市%' );
SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
FROM `QSOptimize_city`
INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`)
WHERE (`QSOptimize_person_visitation`.`person_id` = 2 AND `QSOptimize_city`.`name` LIKE '%市%' );
SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
FROM `QSOptimize_city`
INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`)
WHERE (`QSOptimize_person_visitation`.`person_id` = 3 AND `QSOptimize_city`.`name` LIKE '%市%' );
SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
FROM `QSOptimize_city`
INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`)
WHERE (`QSOptimize_person_visitation`.`person_id` = 4 AND `QSOptimize_city`.`name` LIKE '%市%' );
详细分析一下这些请求事件。
众所周知,QuerySet是lazy的,要用的时候才会去访问数据库。运行到第二行Python代码时,for循环将plist看做iterator,这会触发数据库查询。最初的两次SQL查询就是prefetch_related导致的。
虽然已经查询结果中包含所有所需的city的信息,但因为在循环体中对Person.visitation进行了filter操作,这显然改变了数据库请求。因此这些操作会忽略掉之前缓存到的数据,重新进行SQL查询。
但是如果有这样的需求了应该怎么办呢?在Django >= 1.7,可以通过下一节的Prefetch对象来实现,如果你的环境是Django < 1.7,可以在Python中完成这部分操作。
plist = Person.objects.prefetch_related('visitation')
[[city for city in p.visitation.all() if u"市" in city.name] for p in plist]
Prefetch 对象
在Django >= 1.7,可以用Prefetch对象来控制prefetch_related函数的行为。
注:由于我没有安装1.7版本的Django环境,本节内容是参考Django文档写的,没有进行实际的测试。
Prefetch对象的特征:
一个Prefetch对象只能指定一项prefetch操作。
Prefetch对象对字段指定的方式和prefetch_related中的参数相同,都是通过双下划线连接的字段名完成的。
可以通过 queryset 参数手动指定prefetch使用的QuerySet。
可以通过 to_attr 参数指定prefetch到的属性名。
Prefetch对象和字符串形式指定的lookups参数可以混用。
继续上面的例子,获取所有人访问过的城市中带有“武”字和“州”的城市:
wus = City.objects.filter(name__icontains = u"武")
zhous = City.objects.filter(name__icontains = u"州")
plist = Person.objects.prefetch_related(
Prefetch('visitation', queryset = wus, to_attr = "wu_city"),
Prefetch('visitation', queryset = zhous, to_attr = "zhou_city"),)
[p.wu_city for p in plist]
[p.zhou_city for p in plist]
注:这段代码没有在实际环境中测试过,若有不正确的地方请指正。
顺带一提,Prefetch对象和字符串参数可以混用。
None
可以通过传入一个None来清空之前的prefetch_related。就像这样:
>>> prefetch_cleared_qset = qset.prefetch_related(None)
小结
prefetch_related主要针一对多和多对多关系进行优化。
prefetch_related通过分别获取各个表的内容,然后用Python处理他们之间的关系来进行优化。
可以通过可变长参数指定需要select_related的字段名。指定方式和特征与select_related是相同的。
在Django >= 1.7可以通过Prefetch对象来实现复杂查询,但低版本的Django好像只能自己实现。
作为prefetch_related的参数,Prefetch对象和字符串可以混用。
prefetch_related的链式调用会将对应的prefetch添加进去,而非替换,似乎没有基于不同版本上区别。
可以通过传入None来清空之前的prefetch_related。


猜你喜欢
- let str = '这是一个字符串[html]语句;[html]字符串很常见';alert(str.replace(/\[
- 我们知道在国内使用 Docker,无论是 Pull、Build 还是 Push 镜像都十分慢,因为毕竟很多源都是国外的源,下载和上传慢是必然
- fallthrough:Go里面switch默认相当于每个case最后带有break,匹配成功后不会自动向下执行其他case,而是跳出整个s
- 首先我们一起来看下 Character entities references (HTML Entities)和 Numeric Chara
- 1.查询高于平均价格的商品名称:SELECT item_name FROM ebsp.product_mark
- 1 安装nginx下载windows上的nginx最新版本,http://www.nginx.org/en/download.html。解压
- 一个简单的SQL 行列转换 Author: eaglet 在数据库开发中经常会遇到行列转换的问题,比如下面的问题,部门,员工和员工类型三张表
- 本文实例讲述了python有证书的加密解密实现方法。分享给大家供大家参考。具体实现方法如下:最近在做python的加解密工作,同时加完密的串
- 应该来说,学会了如何插入记录,如何显示记录,那么现在简单的完整的文章系统、新闻系统和留言系统不成问题。那接着下面的问题就是:随着信息内容的不
- 本文实例讲述了Python工厂函数用法。分享给大家供大家参考,具体如下:参考了很多代码、别人的文章以及书籍,最后自己做了适合自己理解的一种理
- 简介memory_profiler是第三方模块,用于监视进程的内存消耗以及python程序内存消耗的逐行分析。它是一个纯python模块,依
- 参数解释DataFrame.sort_values(by, &nbs
- C#调用python脚本在平常工程项目开发过程中常常会涉及到机器学习、深度学习算法方面的开发任务,但是受限于程序设计语言本身的应用特点,该类
- 列表和元组:list是一种有序的集合,可以随时添加和删除其中的元素.1,创建一个普通列表List = ['Jack',
- 创建测试dataframe:>>> import pandas as pd>>> df = pd.Dat
- 1、二者的区别apply(): 非异步(子进程不是同时执行的),堵塞主进程。它的非异步体现在:一个一个按顺序执行子进程, 子进程不
- 在服务端程序开发的过程中,cookie经常被用于验证用户登录。golang 的 net/http 包中自带 http cookie的定义,下
- 点乘和矩阵乘的区别: 1)点乘(即“ * ”) ---- 各个矩阵对应元素做乘法若 w 为 m*1 的矩阵,x
- 如何实现让每句话的头一个字母都大写? <%dim txtFnametxtFName = &qu
- 目录使用 sync.WaitGroup空 select死循环用 sync.Mutexos.Signal空 channel 或者 nil ch