Django查询数据库的性能优化示例代码
作者:daisy 发布时间:2024-01-22 22:18:48
前言
Django数据层提供各种途径优化数据的访问,一个项目大量优化工作一般是放在后期来做,早期的优化是“万恶之源”,这是前人总结的经验,不无道理。如果事先理解Django的优化技巧,开发过程中稍稍留意,后期会省不少的工作量。
现在有一张记录用户信息的UserInfo数据表,表中记录了10个用户的姓名,呢称,年龄,工作等信息.
models文件
from django.db import models
class Job(models.Model):
title=models.CharField(max_length=32)
class UserInfo(models.Model):
username=models.CharField(max_length=32)
nickname=models.CharField(max_length=32)
job=models.ForeignKey(to="Job",to_field="id",null=True)
数据表中记录:
另一张数据表记录用户工作的Job表,关联用户的工作字段.
要查出每个用户的用户名,呢称和工作等信息
def index(request):
user_list=models.UserInfo.objects.all()
print(user_list.query) # 打印查询时使用的语句
print(type(user_list)) # 打印查询结果的数据类型
for user in user_list:
print("%s-->%s-->%s" %(user.username,user.nickname,user.job.title))
return render(request,'index.html')
打印信息:
SELECT "app01_userinfo"."id", "app01_userinfo"."username", "app01_userinfo"."nickname", "app01_userinfo"."job_id" FROM "app01_userinfo"
<class 'django.db.models.query.QuerySet'>
user1-->user1-->python
user2-->user2-->linux
user3-->user3-->golang
user4-->user4-->python
user5-->user5-->linux
user6-->user6-->golang
user7-->user7-->python
user8-->user8-->linux
user9-->user9-->golang
user10-->user10-->linux
在服务端进行这些操作,这些查询语句的性能是很低的,遍历取出这10个用户的姓名,呢称,工作等信息要在两张数据库中执行11次查询操作.
首先只从UserInfo表中查出所有的用户记录,需要执行一次查询操作.
查询Job数据表,每循环一次用户信息的列表,都需要从Job表中查询一次用户的工作信息.
数据表中总共记录了10条用户记录,所以还需要循环10次才能从Job表中查询完成所有用户的工作信息.所以一共需要执行11次数据库查询操作.
那有没有什么好的方法能够提高数据库查询的效率呢???
def index(request):
user_list=models.UserInfo.objects.values("username","nickname","job")
print(user_list.query) # 打印查询时使用的语句
print(type(user_list)) # 打印查询结果的数据类型
print("user_list:",user_list)
for user in user_list:
print(user["username"], user["nickname"], user["job"])
return render(request,'index.html')
运行程序,在服务端后台打印信息:
SELECT "app01_userinfo"."username", "app01_userinfo"."nickname", "app01_userinfo"."job_id" FROM "app01_userinfo"
<class 'django.db.models.query.QuerySet'>
user_list: <QuerySet [{'username': 'user1', 'nickname': 'user1', 'job': 1}, {'username': 'user2', 'nickname': 'user2', 'job': 2}, {'username': 'user3', 'nickname': 'user3', 'job': 3}, {'username': 'user4', 'nickname': 'user4', 'job': 1}, {'username': 'user5', 'nickname': 'user5', 'job': 2}, {'username': 'user6', 'nickname': 'user6', 'job': 3}, {'username': 'user7', 'nickname': 'user7', 'job': 1}, {'username': 'user8', 'nickname': 'user8', 'job': 2}, {'username': 'user9', 'nickname': 'user9', 'job': 3}, {'username': 'user10', 'nickname': 'user10', 'job': 2}]>
user1 user1 1
user2 user2 2
user3 user3 3
user4 user4 1
user5 user5 2
user6 user6 3
user7 user7 1
user8 user8 2
user9 user9 3
user10 user10 2
可以看到,查询的结果user_list依然是一个QuerySet,但这个对象集合内部却是一个字典.
而且这次的查询只执行了两次数据库查询操作.
通过这种方式,只需要两次查询就能得到想要的数据,优化了数据库的查询效率.
Django数据库优化操作之select_related主动联表查询
上面的例子里,取对象集合的时候,难道只能查询当前数据表,不能查询其他数据表吗??
当然不是,在这里还可以使用select_related这个方法.
在第一次查询的时候,在all()后面加上一个select_related来做主动的联表查询.
在创建这两张数据表时,job在UserInfo数据表中是做为一个ForeignKey存在的,所以加上select_related后不仅只查询到了UserInfo数据库的记录,同时也查询了Job数据表中的记录.
def index(request):
user_list=models.UserInfo.objects.all().select_related("job")
print(user_list.query) # 打印查询时使用的语句
print(type(user_list)) # 打印查询结果的数据类型
print("user_list:",user_list)
for user in user_list:
print("%s-->%s-->%s" %(user.username,user.nickname,user.job.title))
return render(request,'index.html')
服务端打印结果
SELECT "app01_userinfo"."id", "app01_userinfo"."username", "app01_userinfo"."nickname", "app01_userinfo"."job_id", "app01_job"."id", "app01_job"."title" FROM "app01_userinfo" LEFT OUTER JOIN "app01_job" ON ("app01_userinfo"."job_id" = "app01_job"."id")
<class 'django.db.models.query.QuerySet'>
user_list: <QuerySet [<UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>]>
user1-->user1-->python
user2-->user2-->linux
user3-->user3-->golang
user4-->user4-->python
user5-->user5-->linux
user6-->user6-->golang
user7-->user7-->python
user8-->user8-->linux
user9-->user9-->golang
user10-->user10-->linux
查看打印出来的查询语句,其中有
"FROM "app01_userinfo" LEFT OUTER JOIN "app01_job" ON ("app01_userinfo"."job_id" = "app01_job"."id")"
用来做联表查询,只需要一次就可以查询所有的数据了.
同样的,如果还想继续联表,例如在Job表中再加一个外键字段desc,只需要在查询语句中把desc加入进来就可以了
user_list=models.UserInfo.objects.all().select_related("job__desc")
这样一来就把三张表联系起来做联表查询了,但是一定要确保所加的字段为ForeignKey.
如果使用类似models.UserInfo.objects.all()
语句进行查询时,不要做跨表查询,只查询当前表中有的数据,否则查询语句的性能会下降很多.
如果想查其他表中的数据,就加上select_related(ForeignKey字段名);
如果想取多个ForeignKey字段的数据,则可以使用select_related(ForeignKey字段1,ForeignKey字段2,...)
联表查询操作性能也会降低,select_related就是用来做主动联表查询的.
Django数据库优化操作之perfetch_related非主动联表查询
perfetch_related方法是既非主动联表查询,又不进行很多查询语句的一种折衷方案
修改视图函数index
def index(request):
user_list=models.UserInfo.objects.all().prefetch_related("job")
print(user_list.query) # 打印查询时使用的语句
print(type(user_list)) # 打印查询结果的数据类型
print("user_list:",user_list)
for user in user_list:
print("%s-->%s-->%s" %(user.username,user.nickname,user.job.title))
return render(request,'index.html')
后端打印结果
SELECT "app01_userinfo"."id", "app01_userinfo"."username", "app01_userinfo"."nickname", "app01_userinfo"."job_id" FROM "app01_userinfo"
<class 'django.db.models.query.QuerySet'>
user_list: <QuerySet [<UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>]>
user1-->user1-->python
user2-->user2-->linux
user3-->user3-->golang
user4-->user4-->python
user5-->user5-->linux
user6-->user6-->golang
user7-->user7-->python
user8-->user8-->linux
user9-->user9-->golang
user10-->user10-->linux
使用prefetch_related方法未联表执行两次查询操作
先查询用户表中的所有数据,把用户表中所有的job_id全部查询出来,并执行去重操作;
结果查询出用户的3种工作,接下来执行"select"语句查询"Job"数据表中的"title"字段
这样一来就只执行了两次数据表的查询操作
在prefetch_related方法中加入一个字段"job",执行了两次数据库查询操作;
如果再加一个字段,则会再多加一次数据为操作操作.
Django数据库优化操作之only方法
def index(request):
user_list=models.UserInfo.objects.all().only("username")
print(user_list.query) # 打印查询时使用的语句
print(type(user_list)) # 打印查询结果的数据类型
print("user_list:",user_list)
for user in user_list:
print("%s-->%s" %(user.username,user.nickname))
return render(request,'index.html')
服务端后台打印信息
SELECT "app01_userinfo"."id", "app01_userinfo"."username" FROM "app01_userinfo"
<class 'django.db.models.query.QuerySet'>
user_list: <QuerySet [<UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>]>
user1-->user1
user2-->user2
user3-->user3
user4-->user4
user5-->user5
user6-->user6
user7-->user7
user8-->user8
user9-->user9
user10-->user10
执行查询操作的时候加上only方法,其查询结果还是一个对象集合,但是从打印出的查询语句可以看到,执行查询操作时只查询了用户的id字段和username字段,并没有查询nickname字段.
但是在后面的循环中,又可以打印用户的nikename信息.为什么呢,因为又执行了一次查询的请求操作.由此得知,查询操作使用了only方法,在only方法中加入哪个查询字段,在后面就使用哪个查询字段.
加only参数是从查询结果中只取某个字段,而另外一个defer方法则是从查询结果中排除某个字段
Django数据库优化操作之defer方法
修改index视图函数
def index(request):
user_list=models.UserInfo.objects.all().defer("username")
print(user_list.query) # 打印查询时使用的语句
print(type(user_list)) # 打印查询结果的数据类型
print("user_list:",user_list)
for user in user_list:
print("%s" % user.nickname)
return render(request,'index.html')
服务端打印信息
SELECT "app01_userinfo"."id", "app01_userinfo"."nickname", "app01_userinfo"."job_id" FROM "app01_userinfo"
<class 'django.db.models.query.QuerySet'>
user_list: <QuerySet [<UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>, <UserInfo: UserInfo object>]>
user1
user2
user3
user4
user5
user6
user7
user8
user9
user10
通过打印的查询语句可以知道,使用defer方法后,只从数据库中查询了用户的id字段和用户的nickname字段操作,并没有查询username字段,由此也可以提高Django查询数据库的性能.
来源:http://www.cnblogs.com/renpingsheng/p/7583550.html


猜你喜欢
- 我写的这个程序import tensorflow as tfsess=tf.InteractiveSession()x=tf.Variabl
- 序章yield item这行代码会产出一个值,提供给next()的调用方;此外还会做出让步,暂停执行生成器,让调用方继续工作,知道需要使用另
- 本文实例讲述了Python单体模式的几种常见实现方法。分享给大家供大家参考,具体如下:这里python实现的单体模式,参考了:https:/
- 本文实例讲述了Python网络编程之TCP与UDP协议套接字用法。分享给大家供大家参考,具体如下:TCP协议服务器端:#!/usr/bin/
- 一直以来都是链接SQL Server数据库服务但是在部署时将很麻烦,所以突发奇想,直接连接到MDF文件,刚开始还很混乱不会连接,后来向导,连
- 直方图,又称质量分布图,是一种统计报告图,由一系列高度不等的纵条或线段表示数据分布情况。用横轴表示数据类型,纵轴表示分布情况。直方图是数值数
- 生产系统随着业务增长总会经历一个业务量由小变大的过程,可扩展性是考量数据库系统高可用性的一个重要指标;在单表/数据库数据量过大,更新量不断飙
- 由于XML本身的诸多优点,XML技术已被广泛的使用,目前的好多软件技术同XML紧密相关,比如微软的.net 平台对xml提供了强大的支持,提
- batch的lstm# 导入相应的包import torchimport torch.nn as nnimport torch.nn.fun
- 支持Python的IDE有IPython、Aptana Studio(在Eclipse的基础上加插件集改的)、PyCharm(由 JetBr
- 这篇文章主要介绍了Python如何计算语句执行时间,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可
- django启动我们在启动一个django项目的时候,无论你是在命令行执行还是在pycharm直接点击运行,其实都是执行'runse
- 前言在最一开始,我的B站收藏一直是存放在默认收藏夹中,但是随着视频收藏的越来越多,没有分类的视频放在一起,想在众多视频中找到想要的视频非常困
- 前言:索引下推(ICP)是针对MySQL使用索引从表中检索数据行的情况的优在没有索引下推的情况下,MySQL通过存储引擎遍历索引来定位表中的
- 最近在做微信支付,调用微信的统一下单支付接口http://mch.weixin.qq.com/wiki/doc/api/jsapi.php?
- 前言说到 vue 中的 watch 方法,大家可能首先想到,它是用来监听数据的变化,一旦数据发生变化可以执行一些其他的操作。但是 watch
- 一个用asp来处理jmail发信的过程,及使用方法. 发信时,直接调用这个过程就行了,很方便。<% dim
- 在网页设计中有一些通用的交互设计模式。网站导航各种各样的通用和大家熟知的设计模式,可以用来作为为网站创建有效地信息架构的基础。这篇指南涵盖了
- 表结构: mysql> desc demo; +-------+------------------+------+-----+---
- 许多游戏玩家一定会对游戏中的动态鼠标指针有很深的印象,其实只要一句简单的CSS(层叠样式表),你也能在网页上实现这种效果。首先,你需要一个鼠