SQL窗口函数之排名窗口函数的使用
作者:梁萌 发布时间:2024-01-26 18:49:31
关于窗口函数的基础,请看文章SQL窗口函数
取值窗口函数可以用于返回窗口内指定位置的数据行。常见的取值窗口函数如下:
LAG函数可以返回窗口内当前行之前的第N行数据。LEAD函数可以返回窗口内当前行之后的第N行数据。FIRST_VALUE函数可以返回窗口内第一行数据。LAST_VALUE函数可以返回窗口内最后一行数据。NTH_VALUE函数可以返回窗口内第N行数据。
其中,LAG函数和LEAD函数不支持动态的窗口大小,它们以整个分区作为分析的窗口。
案例分析
案例使用的示例表
下面的查询中会用到一张表,sales_monthly表中存储了商品销量信息,product表示产品名称,ym表示年月,amount表示销售金额(元)。
以下是该表中的部分数据:
这个表的初始化脚本可以在文章底部获取。
1.环比分析
环比增长指的是本期数据与上期数据相比的增长,例如,产品2019年6月的销售额与2019年5月的销售额相比增加的部分。
以下语句统计了各种产品每个月的环比增长率:
SELECT s.product AS "产品", s.ym AS "年月", s.amount AS "销售额",
(
(s.amount - LAG(s.amount,1) OVER (PARTITION BY product ORDER BY s.ym))/
LAG(s.amount,1) OVER (PARTITION BY product ORDER BY s.ym)
) * 100 AS "环比增长率(%)"
FROM sales_monthly s
ORDER BY s.product,s.ym
其中,LAG(amount,1)表示获取上一期的销售额,PARTITION BY选项表示按照产品分区,ORDER BY选项表示按照月份进行排序。
当前月份的销售额amount减去上一期的销售额,再除以上一期的销售额,就是环比增长率。
该查询返回的结果如下:
2018年1月是第一期,因此其环比增长率为空。
“桔子”2018年2月的环比增长率约为0.2856%((10183-10154)/10154×100),依此类推。
2.同比分析
同比增长指的是本期数据与上一年度或历史同期相比的增长,例如,产品2019年6月的销售额与2018年6月的销售额相比增加的部分。
以下语句统计了各种产品每个月的同比增长率:
SELECT s.product AS "产品", s.ym AS "年月", s.amount AS "销售额",
(
(s.amount - LAG(s.amount,12) OVER (PARTITION BY product ORDER BY s.ym))/
LAG(s.amount,12) OVER (PARTITION BY product ORDER BY s.ym)
) * 100 AS "同比增长率(%)"
FROM sales_monthly s
ORDER BY s.product,s.ym
其中,LAG(amount,12)表示当前月份之前第12期的销售额,也就是去年同月份的销售额。
PARTITION BY选项表示按照产品分区,ORDER BY选项表示按照月份进行排序。
当前月份的销售额amount减去去年同期的销售额,再除以去年同期的销售额,就是同比增长率。
该查询返回的结果如下:
2018年的12期数据都没有对应的同比增长率,“桔子”2019年1月的同比增长率约为9.3067%((11099-10154)/10154×100),依此类推。
提示:LEAD函数与LAG函数的使用方法类似,不过它的返回结果是当前行之后的第N行数据。
3.复合增长率
复合增长率是第N期的数据除以第一期的基准数据,然后开N-1次方再减去1得到的结果。
假如2018年的产品销售额为10000,2019年的产品销售额为12500,2020年的产品销售额为15000。那么这两年的复合增长率的计算方式如下:
以年度为单位计算的复合增长率被称为年均复合增长率,以月度为单位计算的复合增长率被称为月均复合增长率。
以下查询统计了自2018年1月以来不同产品的月均销售额复合增长率:
WITH s (product,ym,amount,first_amount,num) AS (
SELECT m.product, m.ym, m.amount,
FIRST_VALUE(m.amount) OVER (PARTITION BY m.product ORDER BY m.ym),
ROW_NUMBER() OVER (PARTITION BY m.product ORDER BY m.ym)
FROM sales_monthly m
)
SELECT product AS "产品", ym AS "年月",amount AS "销售额",
(POWER( amount/first_amount, 1.0/NULLIF(num-1,0)) -1)*100 AS "月均复合增长率(%)"
FROM s
ORDER BY product, ym
首先定义了一个通用表表达式,其中FIRST_VALUE(amount)返回了第一期(201801)的销售额,ROW_NUMBER函数返回了每一期的编号。
主查询中的POWER函数用于执行开方运算,NULLIF函数用于处理第一期数据的除零错误,常量1.0用于避免由整数除法所导致的精度丢失问题。
该查询返回的结果如下:
2018年1月是第一期,因此其产品月均销售额复合增长率为空。
“桔子”2018年2月的月均销售额复合增长率等于它的环比增长率,2018年3月的月均销售额复合增长率等于0.4471%,依此类推。
4.不同产品最高和最低销售额
以下语句统计了不同产品最低销售额、最高销售额以及第三高销售额所在的月份:
SELECT product AS "产品", ym AS "年月",amount AS "销售额",
FIRST_VALUE(m.ym) OVER (
PARTITION BY m.product ORDER BY m.amount DESC
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
) AS "最高销售额月份",
LAST_VALUE(m.ym) OVER (
PARTITION BY m.product ORDER BY m.amount DESC
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
) AS "最低销售额月份",
NTH_VALUE(m.ym,3) OVER (
PARTITION BY m.product ORDER BY m.amount DESC
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
) AS "第三高销售额月份"
FROM sales_monthly m
ORDER BY product, ym;
三个窗口函数的OVER子句相同,PARTITION BY选项表示按照产品进行分区,ORDER BY选项表示按照销售额从高到低排序。
以上三个函数的默认窗口都是从分区的第一行到当前行,因此我们将窗口扩展到了整个分区。
该查询返回的结果如下:
“桔子”的最高销售额出现在2019年6月,最低销售额出现在2018年1月,第三高销售额出现在2019年4月。
示例表和脚本
-- 创建销量表sales_monthly
-- product表示产品名称,ym表示年月,amount表示销售金额(元)
CREATE TABLE sales_monthly(product VARCHAR(20), ym VARCHAR(10), amount NUMERIC(10, 2));
-- 生成测试数据
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201801',10159.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201802',10211.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201803',10247.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201804',10376.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201805',10400.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201806',10565.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201807',10613.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201808',10696.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201809',10751.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201810',10842.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201811',10900.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201812',10972.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201901',11155.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201902',11202.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201903',11260.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201904',11341.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201905',11459.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('苹果','201906',11560.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201801',10138.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201802',10194.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201803',10328.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201804',10322.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201805',10481.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201806',10502.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201807',10589.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201808',10681.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201809',10798.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201810',10829.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201811',10913.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201812',11056.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201901',11161.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201902',11173.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201903',11288.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201904',11408.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201905',11469.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('香蕉','201906',11528.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201801',10154.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201802',10183.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201803',10245.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201804',10325.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201805',10465.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201806',10505.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201807',10578.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201808',10680.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201809',10788.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201810',10838.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201811',10942.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201812',10988.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201901',11099.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201902',11181.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201903',11302.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201904',11327.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201905',11423.00);
INSERT INTO sales_monthly (product,ym,amount) VALUES ('桔子','201906',11524.00);
来源:https://blog.csdn.net/liangmengbk/article/details/124257706


猜你喜欢
- omitempty在go中的使用直接上代码:package mainimport ( "encoding/json&q
- PyGame是一个Python的库,能够让你更容易的写出一个游戏。它提供的功能包括图片处理和声音重放的功能,并且它们能很容易的整合进你的游戏
- 本文实例为大家分享了JS实现长图上下滚动的具体代码,供大家参考,具体内容如下案例描述将一张长图放在某一固定长宽的盒子里,当鼠标置于盒子的上半
- Golang调度机制最近抽空研究、整理了一下Golang调度机制,学习了其他大牛的文章。把自己的理解写下来。如有错误,请指正!!!golan
- “重构”的春风吹遍大江南北,互联网一时间风声鹤唳,“div+CSS”俨然已成为一种“时尚”,难以尽数的网站都不约而同地开始了自己的“重构”。
- Python单元测试unittest中提供了一下四种装饰器实现测试跳过和预期故障。(使用Python 2.7.13)请查考Python手册中
- 最近学习了Oracle修改字段类型方法,留做记录。有一个表名为tb,字段段名为name,数据类型nchar(20)。1、假设字段数据为空,则
- 本文实例讲述了Python常见工厂函数用法。分享给大家供大家参考,具体如下:工厂函数:能够产生类实例的内建函数。 工厂函数是指这些
- 一、基本概念(查询语句)①基本语句1、“select * from 表名;”,—
- 八皇后问题描述:在一个8✖️8的棋盘上,任意摆放8个棋子,要求任意两个棋子不能在同一行,同一列,同一斜线上,问有多少种解法。规则分析:任意两
- 本文实例讲述了Python内存管理。分享给大家供大家参考,具体如下:a = 1a是引用,1是对象。Python缓存整数和短字符串,对象只有一
- 假设,你现在维护一个支持邮箱登录的系统,用户表是这么定义的:create table SUser( ID bigint unsig
- 本文为大家分享了python字典DICT类型合并的方法,供大家参考,具体内容如下我要的字典的键值有些是数据库中表的字段名, 但是有些却不是,
- 大部分新手刚学Django开发的时候默认用的都是SQLite数据库,上线部署的时候,大多用的却是Mysql。那么我们应该如何把数据库从SQL
- csv的简单介绍CSV (Comma Separated Values),即逗号分隔值(也称字符分隔值,因为分隔符可以不是逗号),是一种常用
- 目录一、axis简介二、不一样的axis对于axis=0三、总结补充:python中某些函数axis参数的理解在我们使用Python中的Nu
- 在 Pandas 中有很多种方法可以进行dataframe(数据框)的合并。本文将研究这些不同的方法,以及如何将它们执行速度的对比。合并DF
- 问题:1. 访问 ASP 页面时,出现以下错误:Active Server Pages 错误 'ASP 0201'错误无效的
- 通过启用php.ini配置文件中的相关选项,就可以将大部分想利用SQL注入漏洞的骇客拒绝于门外。 开启magic_quote_gpc=on之
- 内置300余汉字点阵.纯ASP实现汉字验证码.不读数据库.多种属性自由调节,其中包括:生成的图片长和宽,字符数,背景显示效果(渐变,杂色,固