利用 Python 实现多任务进程
作者:阿拉斯加 发布时间:2023-12-19 02:53:52
一、进程介绍
进程:正在执行的程序,由程序、数据和进程控制块组成,是正在执行的程序,程序的一次执行过程,是资源调度的基本单位。
程序:没有执行的代码,是一个静态的。
二、线程和进程之间的对比
由图可知:此时电脑有 9 个应用进程,但是一个进程又会对应于多个线程,可以得出结论:
进程:能够完成多任务,一台电脑上可以同时运行多个 QQ
线程:能够完成多任务,一个 QQ 中的多个聊天窗口
根本区别:进程是操作系统资源分配的基本单位,而线程是任务调度和执行的基本单位.
三、使用多进程的优势
1、拥有独立GIL
首先由于进程中 GIL
的存在,Python
中的多线程并不能很好地发挥多核优势,一个进程中的多个线程,在同 一时刻只能有一个线程运行。而对于多进程来说,每个进程都有属于自己的 GIL
,所以,在多核处理器下,多进程的运行是不会受 GIL的影响的。因此,多进 程能更好地发挥多核的优势。
2、效率高
当然,对于爬虫这种 IO
密集型任务来说,多线程和多进程影响差别并不大。对于计算密集型任务来说,Python
的多进程相比多线 程,其多核运行效率会有成倍的提升。
四、Python 实现多进程
我们先用一个实例来感受一下:
1、使用 process 类
import multiprocessing
def process(index):
print(f'Process: {index}')
if __name__ == '__main__':
for i in range(5):
p = multiprocessing.Process(target=process, args=(i,))
p.start()
这是一个实现多进程最基础的方式:通过创建 Process
来新建一个子进程,其中 target
参数传入方法名,args
是方法的参数,是以 元组的形式传入,其和被调用的方法 process
的参数是一一对应的。
注意:这里 args
必须要是一个元组,如果只有一个参数,那也要在元组第一个元素后面加一个逗号,如果没有逗号则 和单个元素本身没有区别,无法构成元组,导致参数传递出现问题。创建完进程之后,我们通过调用 start
方法即可启动进程了。
运行结果如下:
Process: 0
Process: 1
Process: 2
Process: 3
Process: 4
可以看到,我们运行了 5 个子进程,每个进程都调用了 process
方法。process
方法的 index
参数通过 Process
的 args
传入,分别是 0~4 这 5 个序号,最后打印出来,5 个子进程运行结束。
2、继承 process 类
from multiprocessing import Process
import time
class MyProcess(Process):
def __init__(self,loop):
Process.__init__(self)
self.loop = loop
def run(self):
for count in range(self.loop):
time.sleep(1)
print(f'Pid:{self.pid} LoopCount: {count}')
if __name__ == '__main__':
for i in range(2,5):
p = MyProcess(i)
p.start()
我们首先声明了一个构造方法,这个方法接收一个 loop
参数,代表循环次数,并将其设置为全局变量。在 run
方法中,又使用这 个 loop
变量循环了 loop 次并打印了当前的进程号和循环次数。
在调用时,我们用 range
方法得到了 2、3、4 三个数字,并把它们分别初始化了 MyProcess
进程,然后调用 start
方法将进程启动起 来。
注意:这里进程的执行逻辑需要在 run
方法中实现,启动进程需要调用 start
方法,调用之后 run
方法便会执行。
运行结果如下:
Pid:12976 LoopCount: 0
Pid:15012 LoopCount: 0
Pid:11976 LoopCount: 0
Pid:12976 LoopCount: 1
Pid:15012 LoopCount: 1
Pid:11976 LoopCount: 1
Pid:15012 LoopCount: 2
Pid:11976 LoopCount: 2
Pid:11976 LoopCount: 3
注意:这里的进程 pid 代表进程号,不同机器、不同时刻运行结果可能不同。
五、进程之间的通信
1、Queue-队列 先进先出
from multiprocessing import Queue
import multiprocessing
def download(p): # 下载数据
lst = [11,22,33,44]
for item in lst:
p.put(item)
print('数据已经下载成功....')
def savedata(p):
lst = []
while True:
data = p.get()
lst.append(data)
if p.empty():
break
print(lst)
def main():
p1 = Queue()
t1 = multiprocessing.Process(target=download,args=(p1,))
t2 = multiprocessing.Process(target=savedata,args=(p1,))
t1.start()
t2.start()
if __name__ == '__main__':
main()
数据已经下载成功....
[11, 22, 33, 44]
2、共享全局变量不适用于多进程编程
import multiprocessing
a = 1
def demo1():
global a
a += 1
def demo2():
print(a)
def main():
t1 = multiprocessing.Process(target=demo1)
t2 = multiprocessing.Process(target=demo2)
t1.start()
t2.start()
if __name__ == '__main__':
main()
运行结果:
1
有结果可知:全局变量不共享;
六、进程池之间的通信
1、进程池引入
当需要创建的子进程数量不多时,可以直接利用 multiprocessing
中的 Process
动态生成多个进程,但是如果是上百甚至上千个目标,手动的去创建的进程的工作量巨大,此时就可以用到 multiprocessing
模块提供的 Pool
方法。
from multiprocessing import Pool
import os,time,random
def worker(a):
t_start = time.time()
print('%s开始执行,进程号为%d'%(a,os.getpid()))
time.sleep(random.random()*2)
t_stop = time.time()
print(a,"执行完成,耗时%0.2f"%(t_stop-t_start))
if __name__ == '__main__':
po = Pool(3) # 定义一个进程池
for i in range(0,10):
po.apply_async(worker,(i,)) # 向进程池中添加worker的任务
print("--start--")
po.close()
po.join()
print("--end--")
运行结果:
--start--
0开始执行,进程号为6664
1开始执行,进程号为4772
2开始执行,进程号为13256
0 执行完成,耗时0.18
3开始执行,进程号为6664
2 执行完成,耗时0.16
4开始执行,进程号为13256
1 执行完成,耗时0.67
5开始执行,进程号为4772
4 执行完成,耗时0.87
6开始执行,进程号为13256
3 执行完成,耗时1.59
7开始执行,进程号为6664
5 执行完成,耗时1.15
8开始执行,进程号为4772
7 执行完成,耗时0.40
9开始执行,进程号为6664
6 执行完成,耗时1.80
8 执行完成,耗时1.49
9 执行完成,耗时1.36
--end--
一个进程池只能容纳 3 个进程,执行完成才能添加新的任务,在不断的打开与释放的过程中循环往复。
七、案例:文件批量复制
操作思路:
获取要复制文件夹的名字
创建一个新的文件夹
获取文件夹里面所有待复制的文件名
创建进程池
向进程池添加任务
代码如下:
导包
import multiprocessing
import os
import time
定制文件复制函数
def copy_file(Q,oldfolderName,newfolderName,file_name):
# 文件复制,不需要返回
time.sleep(0.5)
# print('\r从%s文件夹复制到%s文件夹的%s文件'%(oldfolderName,newfolderName,file_name),end='')
old_file = open(oldfolderName + '/' + file_name,'rb') # 待复制文件
content = old_file.read()
old_file.close()
new_file = open(newfolderName + '/' + file_name,'wb') # 复制出的新文件
new_file.write(content)
new_file.close()
Q.put(file_name) # 向Q队列中添加文件
定义主函数
def main():
oldfolderName = input('请输入要复制的文件夹名字:') # 步骤1获取要复制文件夹的名字(可以手动创建,也可以通过代码创建,这里我们手动创建)
newfolderName = oldfolderName + '复件'
# 步骤二 创建一个新的文件夹
if not os.path.exists(newfolderName):
os.mkdir(newfolderName)
filenames = os.listdir(oldfolderName) # 3.获取文件夹里面所有待复制的文件名
# print(filenames)
pool = multiprocessing.Pool(5) # 4.创建进程池
Q = multiprocessing.Manager().Queue() # 创建队列,进行通信
for file_name in filenames:
pool.apply_async(copy_file,args=(Q,oldfolderName,newfolderName,file_name)) # 5.向进程池添加任务
po.close()
copy_file_num = 0
file_count = len(filenames)
# 不知道什么时候完成,所以定义一个死循环
while True:
file_name = Q.get()
copy_file_num += 1
time.sleep(0.2)
print('\r拷贝进度%.2f %%'%(copy_file_num * 100/file_count),end='') # 做一个拷贝进度条
if copy_file_num >= file_count:
break
程序运行
if __name__ == '__main__':
main()
运行结果如下图所示:
运行前后文件目录结构对比
来源:https://developer.51cto.com/art/202110/685495.htm


猜你喜欢
- 前言终于下定决心学习Python了。既然从头开始,就需要认认真真。首先需要说的是,我是初学Python,这篇文章只是用于展示global和n
- js中没有foreach这个关键字,但是可以用var v in array来实现遍历。但是需要注意的是, 拿到的是key而不是value。看
- Linux下MySQL整个数据库的备份与还原[root]# /usr/bin/mysqldump -h127.0.0.1 -uusernam
- 实现了宽度、高度、透明度的渐变,还能以高度宽度中点为中心,还扩展成以任意点为中心渐变(实例中以点击点为中心)。<!DOCTYPE ht
- ubuntu 系统自带的 python 有多个版本,使用时难免会遇到环境变量出错,特别是当自动化运行脚本的时候。特别是近一个月来,实验室的小
- 内网的主机都是自动分配ip地址,有时候需要查看下有那些ip在使用,就写了个简单的脚本。linux和windows下都可以用,用多线程来pin
- 功能:扫描当前目录下所有CSV文件并对其中文件进行统计,输出统计值到CSV文件pip install pandasimport pandas
- Dubbo提供动态调整超时时间的服务治理能力,可以在无需重启应用的情况下,动态调整服务超时时间。Dubbo可以通过XML配置,注解配置,动态
- 1. 表单框类型<!DOCTYPE html><html lang="en"><head&
- 深度优先算法(DFS 算法)是什么?寻找起始节点与目标节点之间路径的算法,常用于搜索逃出迷宫的路径。主要思想是,从入口开始,依次搜寻周围可能
- 以下的文章主要是介绍SQL Server数据库与其实际应用元数据,我前两天在相关网站看见SQL Server数据库与其实际应用元数据的资料,
- 在对excel的操作中,调整列的顺序以及添加一些列也是经常用到的,下面我们用pandas实现这一功能。1、调整列的顺序>>>
- 本文实例为大家分享了js判断密码强度的具体代码,供大家参考,具体内容如下<!DOCTYPE html><html>&
- 如题,我有一个模板,我想根据需求复制模板中间的某一页多次,比如复制第五页,然后复制3次,那么第六页,第七页,第八页都是和第五页一模一样的pp
- 前言: 在项目开发中,一些业务表字段经常使用日期和时间类型,而且后续还会牵涉到这类字段的查询。关于日期及时间的查询等各类需求也很多,本篇文章
- JavaScript中的定时器大家基本在平时的开发中都遇见过吧,但是又有多少人去深入的理解其中的原理呢?下面我们就来分析一下定时器的实现原理
- 概述Alwayson相对于数据库镜像最大的优势就是可读副本,带来可读副本的同时还添加了一个新的功能就是配置只读路由实现读写分离;当然这里的读
- 如何在线删除表或索引? <%Set conn1 = Server.CreateObject(&
- CSS重设就是由于各种浏览器解释CSS样式的初始值有所不同,导致设计师在没有定义某个CSS属性时,不同的浏览器会按照自己的默认值来为没有定义
- 最初开发的 Matplotlib,仅支持绘制 2d 图形,后来随着版本的不断更新, Matplotlib 在二维绘图的基础上,构建了一部分较