Python 数据可视化超详细讲解折线图的实现
作者:hacker707 发布时间:2023-06-06 14:49:18
绘制简单的折线图
✅在使用matplotlib绘制简单的折线图之前首先需要安装matplotlib,直接在pycharm终端pip install matplotlib即可
✅使用matplotlib绘制简单的折线图,再对其进行定制,实现数据的可视化操作
import matplotlib.pyplot as plt # 导入pyplot模块并设置别名为plt
squares = [1, 4, 9, 16, 25]
plt.plot(squares)
plt.show() # 打开matplotib查看器,并显示绘制的图形
运行结果如下:
修改标签文字和线条粗细
上图所示的图形表示的数字越来越大,但标签文字太小,线条太细,不方便观察,这时就需要调整一下增加图形的可读性
import matplotlib.pyplot as plt # 导入pyplot模块并设置别名为plt
squares = [1, 4, 9, 16, 25]
plt.plot(squares, linewidth=5) # 函数linewidth设置绘制线条的粗细
# 设置图表标题,并给坐标轴加上标签
plt.title('Square number', fontsize=24)
plt.xlabel('Value', fontsize=14)
plt.ylabel('Square of Value', fontsize=14)
# 设置刻度标记的大小
plt.tick_params(axis='both', labelsize=14)
plt.show() # 打开matplotib查看器,并显示绘制的图形
效果如下:
校正图形
图形更容易阅读了,但我们发现没有正确的绘制数据,折线图的终点指出4的平方为25!
向plot()提供一系列数字时,它假设第一个数据点对应的x坐标值为0,但我们的第一个点对应的x值为1。为改变这种默认行为,我们可以给plot同时提供输入值和输出值。
import matplotlib.pyplot as plt # 导入pyplot模块并设置别名为plt
input_value = [1, 2, 3, 4, 5]
squares = [1, 4, 9, 16, 25]
plt.plot(input_value, squares, linewidth=5) # 函数linewidth设置绘制线条的粗细
# 设置图表标题,并给坐标轴加上标签
plt.title('Square number', fontsize=24)
plt.xlabel('Value', fontsize=14)
plt.ylabel('Square of Value', fontsize=14)
# 设置刻度标记的大小
plt.tick_params(axis='both', labelsize=14)
plt.show() # 打开matplotib查看器,并显示绘制的图形
效果如下:
现在plot()成功绘制数据,因为我们同时提供了输入值和输出值。使用plot()时可指定各种实参,还可使用众多函数对图像进行定制
使用scatter()绘制散点图并设置其格式
有时候需要绘制散点图并设置各个数据的格式。例如:你可能想以一种颜色显示较小的值,用一种颜色显示较大的值。绘制大型数据集时,你还可以对每个点都设置同样的格式,再使用不同的样式选项重新绘制某个点,以突出它们 ✅要绘制单个点,可使用函数scatter(),并向它传递一对x,y坐标,它将在指定绘制绘制一个点
import matplotlib.pyplot as plt
plt.scatter(2, 4) # 向scatter函数传递一对x,y坐标
plt.show() # 打开matplotib查看器,并显示绘制的图形
效果如下:
下面来设置输出的样式,使其更有趣:添加标题,给坐标轴加上标签,并设置文本格式
import matplotlib.pyplot as plt
plt.scatter(2, 4, s=200) # 向scatter函数传递一对x,y坐标
# 设置图表标题,并给坐标轴加上标签
plt.title('Square number', fontsize=24)
plt.xlabel('Value', fontsize=14)
plt.ylabel('Square of Value', fontsize=14)
# 设置刻度标记的大小
plt.tick_params(axis='both', which='major', labelsize=14)
plt.show() # 打开matplotib查看器,并显示绘制的图形
效果如下:
使用scatter()绘制一系列点
import matplotlib.pyplot as plt
x_values = [1, 2, 3, 4, 5]
y_values = [1, 4, 9, 16, 25]
plt.scatter(x_values, y_values, s=100) # 向scatter函数传递一对x,y坐标
# 设置图表标题,并给坐标轴加上标签
plt.title('Square number', fontsize=24)
plt.xlabel('Value', fontsize=14)
plt.ylabel('Square of Value', fontsize=14)
# 设置刻度标记的大小
plt.tick_params(axis='both', which='major', labelsize=14)
plt.show() # 打开matplotib查看器,并显示绘制的图形
效果如下:
自动计算数据
手动计算列表包含的值很麻烦,可以利用python中的循环来解决,下面是绘制1000个点的范例:
import matplotlib.pyplot as plt
x_values = list(range(1, 1001))
y_values = [x ** 2 for x in x_values]
plt.scatter(x_values, y_values, s=10) # 向scatter函数传递一对x,y坐标
# 设置图表标题,并给坐标轴加上标签
plt.title('Square number', fontsize=24)
plt.xlabel('Value', fontsize=14)
plt.ylabel('Square of Value', fontsize=14)
# 设置刻度标记的大小
plt.tick_params(axis='both', which='major', labelsize=14)
# 设置每个坐标轴的取值范围
plt.axis([0, 1100, 0, 1100000])
plt.show() # 打开matplotib查看器,并显示绘制的图形
✅这里需要注意函数axis需要传入四个值,x,y坐标的最小值,最大值 效果如下:
删除数据点的轮廓
要删除数据点的轮廓,可在调用scatter()时传递实参edgecolor=‘none’
plt.scatter(x_values, y_values, edgecolors='none', s=10)
import matplotlib.pyplot as plt
x_values = list(range(1, 1001))
y_values = [x ** 2 for x in x_values]
plt.scatter(x_values, y_values, edgecolors='none', s=10) # 向scatter函数传递一对x,y坐标
# 设置图表标题,并给坐标轴加上标签
plt.title('Square number', fontsize=24)
plt.xlabel('Value', fontsize=14)
plt.ylabel('Square of Value', fontsize=14)
# 设置刻度标记的大小
plt.tick_params(axis='both', which='major', labelsize=14)
# 设置每个坐标轴的取值范围
plt.axis([0, 1100, 0, 1100000])
plt.show() # 打开matplotib查看器,并显示绘制的图形
效果如下:
自定义颜色
要修改数据点的颜色,可向scatter()传递参数c,并将其设置要使用的颜色的名称
plt.scatter(x_values, y_values, c='red',edgecolors='none', s=10)
import matplotlib.pyplot as plt
x_values = list(range(1, 1001))
y_values = [x ** 2 for x in x_values]
plt.scatter(x_values, y_values, c='red',edgecolors='none', s=10) # 向scatter函数传递一对x,y坐标
# 设置图表标题,并给坐标轴加上标签
plt.title('Square number', fontsize=24)
plt.xlabel('Value', fontsize=14)
plt.ylabel('Square of Value', fontsize=14)
# 设置刻度标记的大小
plt.tick_params(axis='both', which='major', labelsize=14)
# 设置每个坐标轴的取值范围
plt.axis([0, 1100, 0, 1100000])
plt.show() # 打开matplotib查看器,并显示绘制的图形
效果如下:
使用颜色映射
颜色映射(colormap)是一系列颜色,它们从颜色渐变到结束颜色。在可视化中,颜色映射用于突出数据的规律,例如,你可能用较浅的颜色显示较小的值,并使用较深的颜色显示较大的值
import matplotlib.pyplot as plt
x_values = list(range(1, 1001))
y_values = [x ** 2 for x in x_values]
# 将c设置为y值列表,使用参数cmap告诉pyplot使用哪个颜色映射
plt.scatter(x_values, y_values, c=y_values, cmap=plt.cm.Blues, edgecolors='none', s=10) # 向scatter函数传递一对x,y坐标
# 设置图表标题,并给坐标轴加上标签
plt.title('Square number', fontsize=24)
plt.xlabel('Value', fontsize=14)
plt.ylabel('Square of Value', fontsize=14)
# 设置刻度标记的大小
plt.tick_params(axis='both', which='major', labelsize=14)
# 设置每个坐标轴的取值范围
plt.axis([0, 1100, 0, 1100000])
plt.show() # 打开matplotib查看器,并显示绘制的图形
自动保存图表
要让程序自动将图表保存到文件中,可将对plt.show()的调用替换为对plt.sacefig()的调用
plt.savefig('squares.png',bbox_inches='tight')
第一个实参指定要以什么样的文件名保存图表,第二个实参指定将图表多余的空白区域裁剪(如果要保留,可省略这个实参)
import matplotlib.pyplot as plt
x_values = list(range(1, 1001))
y_values = [x ** 2 for x in x_values]
# 将c设置为y值列表,使用参数cmap告诉pyplot使用哪个颜色映射
plt.scatter(x_values, y_values, c=y_values, cmap=plt.cm.Blues, edgecolors='none', s=10) # 向scatter函数传递一对x,y坐标
# 设置图表标题,并给坐标轴加上标签
plt.title('Square number', fontsize=24)
plt.xlabel('Value', fontsize=14)
plt.ylabel('Square of Value', fontsize=14)
# 设置刻度标记的大小
plt.tick_params(axis='both', which='major', labelsize=14)
# 设置每个坐标轴的取值范围
plt.axis([0, 1100, 0, 1100000])
plt.savefig('squares.png',bbox_inches='tight')
plt.show() # 打开matplotib查看器,并显示绘制的图形
保存效果如下:
✅注意事项: 一定要把保存图表的代码放在plt.show前面,要是放在后面show会重新创建新的图片
来源:https://blog.csdn.net/xqe777/article/details/123419931


猜你喜欢
- 变量不是盒子在示例所示的交互式控制台中,无法使用“变量是盒子”做解释。图说明了在 Python 中为什么不能使用盒子比喻,而便利贴则指出了变
- 在做机器学习的时候,遇到这样一个数据集...一共399行10列,1-9列是用不定长度的空格分割,第9-10列之间用'\t'分
- 前言数组类型是各种编程语言中基本的数组结构了,本文来盘点下Python中各种“数组”类型的实现。listtuplearray.arrayst
- 一、动机(Motivate)在软件构建过程中,由于需求的改变,某些类层次结构中常常需要增加新的行为(方法),如果直接在基类中做这样的更改,将
- 前言本人做SSM项目的时候,在做删除功能时,发现找不到字段,在搜索了各种博客之后终于找到了解决办法一、报错Unknown column &a
- Python中一切都是对象。类提供了创建新类型对象的机制。这篇教程中,我们不谈类和面向对象的基本知识,而专注在更好地理解Python面向对象
- 1.MySQL的安装(1)双击我们去官网下载好的MySQL(2) 一直点下一步,直到遇到以下界面(3)选择Typical,会进行跳转,点击I
- 用到的一些知识点:Flask-SQLAlchemy、Flask-Login、Flask-WTF、PyMySQL这里通过一个完整的登录实例来介
- 前言首先是本文总体代码,改一下图像的读取路径就可以运行了,但我还是建议大家先看后面的步骤一行行敲代码,这样效果更好:""
- 矩阵相乘需要前面矩阵的行数与后面矩阵的列数相同方可相乘。第一步,先将前面矩阵的每一行分别与后面矩阵的列相乘,作为结果矩阵的行列;第二步算出结
- 1. Python的数据类型上一遍博文已经详细地介绍了Python的数据类型,详见链接Python的变量命名及数据类型。在这里总结一下Pyt
- 本文介绍了jquery在vue脚手架中的使用方式示例,分享给大家,具体如下:1:在各个vue文件中使用<script>impor
- 本文总结一下,拖拽所延伸出来的一些效果,供大家参考,具体内容如下1.实现拖拉图片时,带框的效果。即当鼠标拖动某一个图片或物体时,其原有位置扔
- 1、超时时间以下这些配置项单位都是秒,在mysql命令行中可以使用show global variables like '变量名
- 介绍Silk是Django框架的实时分析和检查工具。源代码名称:django-silk源代码网址: http://www.git
- 在python开发的过程中,经常会遇到需要打印各种信息。海量的信息堆砌在控制台中,就会导致信息都混在一起,降低了重要信息的可读性。这时候,如
- 一、系统的默认用户1)sys用户是超级用户,具有最高权限,具有sysdba角色,有create database的权限,该用户默认的密码是s
- 环境:Ubuntu14.04,tensorflow=1.4(bazel源码安装),Anaconda python=3.6声明变量主要有两种方
- 1. 需求概述最近接到一份PDF资料需要打印,奈何页面是如图所示的A3格式的,奈何目前条件只支持打印A4。我想要把每页的一个大页面裁成两个小
- 一、准备工作开始之前,先参考上一篇: struts2.3.24 + spring4.1.6 + hibernate4.3.11 +