PyTorch使用GPU训练的两种方法实例
作者:风吹我亦散 发布时间:2023-09-21 08:11:40
标签:pytorch,gpu,训练
Pytorch 使用GPU训练
使用 GPU 训练只需要在原来的代码中修改几处就可以了。
我们有两种方式实现代码在 GPU 上进行训练
方法一 .cuda()
我们可以通过对网络模型,数据,损失函数这三种变量调用 .cuda() 来在GPU上进行训练
# 将网络模型在gpu上训练
model = Model()
model = model.cuda()
# 损失函数在gpu上训练
loss_fn = nn.CrossEntropyLoss()
loss_fn = loss_fn.cuda()
# 数据在gpu上训练
for data in dataloader:
imgs, targets = data
imgs = imgs.cuda()
targets = targets.cuda()
但是如果电脑没有 GPU 就会报错,更好的写法是先判断 cuda 是否可用:
# 将网络模型在gpu上训练
model = Model()
if torch.cuda.is_available():
model = model.cuda()
# 损失函数在gpu上训练
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
loss_fn = loss_fn.cuda()
# 数据在gpu上训练
for data in dataloader:
imgs, targets = data
if torch.cuda.is_available():
imgs = imgs.cuda()
targets = targets.cuda()
代码案例:
# 以 CIFAR10 数据集为例,展示一下完整的模型训练套路,完成对数据集的分类问题
import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time
# 准备数据集
train_data = torchvision.datasets.CIFAR10(root="dataset", train=True, transform=torchvision.transforms.ToTensor(), download=True)
test_data = torchvision.datasets.CIFAR10(root="dataset", train=False, transform=torchvision.transforms.ToTensor(), download=True)
# 获得数据集的长度 len(), 即length
train_data_size = len(train_data)
test_data_size = len(test_data)
# 格式化字符串, format() 中的数据会替换 {}
print("训练数据集及的长度为: {}".format(train_data_size))
print("测试数据集及的长度为: {}".format(test_data_size))
# 利用DataLoader 来加载数据
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 创建网络模型
class Model(nn.Module):
def __init__(self) -> None:
super().__init__()
self.model = nn.Sequential(
nn.Conv2d(3, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, 1, 2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64*4*4, 64),
nn.Linear(64, 10)
)
def forward(self, input):
input = self.model(input)
return input
model = Model()
if torch.cuda.is_available():
model = model.cuda() # 在 GPU 上进行训练
# 创建损失函数
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
loss_fn = loss_fn.cuda() # 在 GPU 上进行训练
# 优化器
learning_rate = 1e-2 # 1e-2 = 1 * (10)^(-2) = 1 / 100 = 0.01
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
# 设置训练网络的一些参数
total_train_step = 0 # 记录训练的次数
total_test_step = 0 # 记录测试的次数
epoch = 10 # 训练的轮数
# 添加tensorboard
writer = SummaryWriter("logs_train")
start_time = time.time() # 开始训练的时间
for i in range(epoch):
print("------第 {} 轮训练开始------".format(i+1))
# 训练步骤开始
for data in train_dataloader:
imgs, targets = data
if torch.cuda.is_available():
imgs = imgs.cuda()
targets = targets.cuda() # 在gpu上训练
outputs = model(imgs) # 将训练的数据放入
loss = loss_fn(outputs, targets) # 得到损失值
optimizer.zero_grad() # 优化过程中首先要使用优化器进行梯度清零
loss.backward() # 调用得到的损失,利用反向传播,得到每一个参数节点的梯度
optimizer.step() # 对参数进行优化
total_train_step += 1 # 上面就是进行了一次训练,训练次数 +1
# 只有训练步骤是100 倍数的时候才打印数据,可以减少一些没有用的数据,方便我们找到其他数据
if total_train_step % 100 == 0:
end_time = time.time() # 训练结束时间
print("训练时间: {}".format(end_time - start_time))
print("训练次数: {}, Loss: {}".format(total_train_step, loss))
writer.add_scalar("train_loss", loss.item(), total_train_step)
# 如何知道模型有没有训练好,即有咩有达到自己想要的需求
# 我们可以在每次训练完一轮后,进行一次测试,在测试数据集上跑一遍,以测试数据集上的损失或正确率评估我们的模型有没有训练好
# 顾名思义,下面的代码没有梯度,即我们不会利用进行调优
total_test_loss = 0
total_accuracy = 0 # 准确率
with torch.no_grad():
for data in test_dataloader: # 测试数据集中取数据
imgs, targets = data
if torch.cuda.is_available():
imgs = imgs.cuda() # 在 GPU 上进行训练
targets = targets.cuda()
outputs = model(imgs)
loss = loss_fn(outputs, targets) # 这里的 loss 只是一部分数据(data) 在网络模型上的损失
total_test_loss = total_test_loss + loss # 整个测试集的loss
accuracy = (outputs.argmax(1) == targets).sum() # 分类正确个数
total_accuracy += accuracy # 相加
print("整体测试集上的loss: {}".format(total_test_loss))
print("整体测试集上的正确率: {}".format(total_accuracy / test_data_size))
writer.add_scalar("test_loss", total_test_loss)
writer.add_scalar("test_accuracy", total_accuracy / test_data_size, total_test_step)
total_test_loss += 1 # 测试完了之后要 +1
torch.save(model, "model_{}.pth".format(i))
print("模型已保存")
writer.close()
方法二 .to(device)
指定 训练的设备
device = torch.device("cpu")# 使用cpu训练
device = torch.device("cuda")# 使用gpu训练
device = torch.device("cuda:0")# 当电脑中有多张显卡时,使用第一张显卡
device = torch.device("cuda:1")# 当电脑中有多张显卡时,使用第二张显卡
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
使用 GPU 训练
model = model.to(device)
loss_fn = loss_fn.to(device)
for data in train_dataloader:
imgs, targets = data
imgs = imgs.to(device)
targets = targets.to(device)
代码示例:
# 以 CIFAR10 数据集为例,展示一下完整的模型训练套路,完成对数据集的分类问题
import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time
# 定义训练的设备
device = torch.device("cuda")
# 准备数据集
train_data = torchvision.datasets.CIFAR10(root="dataset", train=True, transform=torchvision.transforms.ToTensor(), download=True)
test_data = torchvision.datasets.CIFAR10(root="dataset", train=False, transform=torchvision.transforms.ToTensor(), download=True)
# 获得数据集的长度 len(), 即length
train_data_size = len(train_data)
test_data_size = len(test_data)
# 格式化字符串, format() 中的数据会替换 {}
print("训练数据集及的长度为: {}".format(train_data_size))
print("测试数据集及的长度为: {}".format(test_data_size))
# 利用DataLoader 来加载数据
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 创建网络模型
class Model(nn.Module):
def __init__(self) -> None:
super().__init__()
self.model = nn.Sequential(
nn.Conv2d(3, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, 1, 2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64*4*4, 64),
nn.Linear(64, 10)
)
def forward(self, input):
input = self.model(input)
return input
model = Model()
model = model.to(device) # 在 GPU 上进行训练
# 创建损失函数
loss_fn = nn.CrossEntropyLoss()
loss_fn = loss_fn.to(device) # 在 GPU 上进行训练
# 优化器
learning_rate = 1e-2 # 1e-2 = 1 * (10)^(-2) = 1 / 100 = 0.01
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
# 设置训练网络的一些参数
total_train_step = 0 # 记录训练的次数
total_test_step = 0 # 记录测试的次数
epoch = 10 # 训练的轮数
# 添加tensorboard
writer = SummaryWriter("logs_train")
start_time = time.time() # 开始训练的时间
for i in range(epoch):
print("------第 {} 轮训练开始------".format(i+1))
# 训练步骤开始
for data in train_dataloader:
imgs, targets = data
imgs = imgs.to(device)
targets = targets.to(device)
outputs = model(imgs) # 将训练的数据放入
loss = loss_fn(outputs, targets) # 得到损失值
optimizer.zero_grad() # 优化过程中首先要使用优化器进行梯度清零
loss.backward() # 调用得到的损失,利用反向传播,得到每一个参数节点的梯度
optimizer.step() # 对参数进行优化
total_train_step += 1 # 上面就是进行了一次训练,训练次数 +1
# 只有训练步骤是100 倍数的时候才打印数据,可以减少一些没有用的数据,方便我们找到其他数据
if total_train_step % 100 == 0:
end_time = time.time() # 训练结束时间
print("训练时间: {}".format(end_time - start_time))
print("训练次数: {}, Loss: {}".format(total_train_step, loss))
writer.add_scalar("train_loss", loss.item(), total_train_step)
# 如何知道模型有没有训练好,即有咩有达到自己想要的需求
# 我们可以在每次训练完一轮后,进行一次测试,在测试数据集上跑一遍,以测试数据集上的损失或正确率评估我们的模型有没有训练好
# 顾名思义,下面的代码没有梯度,即我们不会利用进行调优
total_test_loss = 0
total_accuracy = 0 # 准确率
with torch.no_grad():
for data in test_dataloader: # 测试数据集中取数据
imgs, targets = data
imgs = imgs.to(device)
targets = targets.to(device)
outputs = model(imgs)
loss = loss_fn(outputs, targets) # 这里的 loss 只是一部分数据(data) 在网络模型上的损失
total_test_loss = total_test_loss + loss # 整个测试集的loss
accuracy = (outputs.argmax(1) == targets).sum() # 分类正确个数
total_accuracy += accuracy # 相加
print("整体测试集上的loss: {}".format(total_test_loss))
print("整体测试集上的正确率: {}".format(total_accuracy / test_data_size))
writer.add_scalar("test_loss", total_test_loss)
writer.add_scalar("test_accuracy", total_accuracy / test_data_size, total_test_step)
total_test_loss += 1 # 测试完了之后要 +1
torch.save(model, "model_{}.pth".format(i))
print("模型已保存")
writer.close()
【注】对于网络模型和损失函数,直接调用 .cuda() 或者 .to() 即可。但是数据和标注需要返回变量
为了方便记忆,最好都返回变量
使用Google colab进行训练
附:一些和GPU有关的基本操作汇总
# 1,查看gpu信息
if_cuda = torch.cuda.is_available()
print("if_cuda=",if_cuda)
# GPU 的数量
gpu_count = torch.cuda.device_count()
print("gpu_count=",gpu_count)
# 2,将张量在gpu和cpu间移动
tensor = torch.rand((100,100))
tensor_gpu = tensor.to("cuda:0") # 或者 tensor_gpu = tensor.cuda()
print(tensor_gpu.device)
print(tensor_gpu.is_cuda)
tensor_cpu = tensor_gpu.to("cpu") # 或者 tensor_cpu = tensor_gpu.cpu()
print(tensor_cpu.device)
# 3,将模型中的全部张量移动到gpu上
net = nn.Linear(2,1)
print(next(net.parameters()).is_cuda)
net.to("cuda:0") # 将模型中的全部参数张量依次到GPU上,注意,无需重新赋值为 net = net.to("cuda:0")
print(next(net.parameters()).is_cuda)
print(next(net.parameters()).device)
# 4,创建支持多个gpu数据并行的模型
linear = nn.Linear(2,1)
print(next(linear.parameters()).device)
model = nn.DataParallel(linear)
print(model.device_ids)
print(next(model.module.parameters()).device)
#注意保存参数时要指定保存model.module的参数
torch.save(model.module.state_dict(), "./data/model_parameter.pkl")
linear = nn.Linear(2,1)
linear.load_state_dict(torch.load("./data/model_parameter.pkl"))
# 5,清空cuda缓存
# 该方在cuda超内存时十分有用
torch.cuda.empty_cache()
来源:https://blog.csdn.net/weixin_45468845/article/details/122971688


猜你喜欢
- 在产品开发中,由UED发起的项目越来越多,但是现在的问题是很难为其设定商业价值的目标。如果没有明确的商业价值目标,很多公司根本没办法花大成本
- 简介本文主要通过探究在golang 中map的数据结构及源码实现来学习和了解map的特性,共包含map的模型探究、存取、扩容等内容。欢迎大家
- 一.图像漫水填充图像漫水填充(FloodFill)是指用一种特定的颜色填充联通区域,通过设置可连通像素的上下限以及连通方式来达到不同的填充效
- python去除空格,tab制表符和\n换行符python中常用的替换字符串的函数有replace(),其用法相信大家都比较熟悉举个例子st
- 前两篇讲述了Django的理论,从这篇开始,我们真正进入Django实战部分,今天先从用户认证开始。当大家平时打开一个网站时,第一步一般做什
- 前言Go 并没有提供删除切片元素专用的语法或函数,需要使用切片本身的特性来删除元素。删除切片指定元素一般有如下几种方法,本文以 []int
- python是一门灵活的语言,也可以说python是一门胶水语言,顾名思义,就是其可以导入各类的包,python的包可以说是所有语言中最多的
- JSON(JavaScript Object Notation, JS 对象标记)是一种轻量级的数据交换格式,通常用于服务端向网页传递数据
- 一丶什么是索引索引是存储引擎快速找到记录的一种数据结构。数据库中的数据可以理解成字典中的单词,而索引就是目录,显而易见这是一种空间换时间的做
- 如果你想连接你的mysql的时候发生这个错误: ERROR 1130: Host '192.168.1.3' is not
- 为网页设置防火墙的主要目的是根据网页内容对不同来访者提供不同的服务,利用Java Script或VB Script,我们很容易做到这一点。但
- 静态文件配置概述:静态文件交由Web服务器处理,Django本身不处理静态文件。简单的处理逻辑如下(以nginx为例):URI请求 --&g
- 一图胜“十”言:SQL Server 数据库总结 一个大概的总结 经过一段时间的学习,也对数据库有了一些认识。 数据库基本是由表,关系,操作
- 标志是一种简单的工具,就象铁锤,简单实用。如果一种工具功能太多导致其效用减弱,那就让它保持简单。你并不需要一把有太多装饰的精美铁锤。对于象征
- 如下所示:import pandas as pd#如果需要的话,需将df中的date列转为datetimedf.date = pd.to_d
- 一、定义(1)如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。我
- 本文实例讲述了Python中pygame的mouse鼠标事件用法。分享给大家供大家参考,具体如下:pygame.mouse提供了一些方法获取
- 1. Mysql binlog参数配置log-bin=mysql-bin打开二进制日志功能,默认在datadir下binlog-ignore
- 写在之前首先是写在之前的一些建议:首先是关于这本书,我真的认为他是将神经网络里非常棒的一本书,但你也需要注意,如果你真的想自己动手去实现,那
- 需要注意的是,firefox下必须要设置下 signed.applets.codebase_principal_support 在 fire