Tensorflow加载Vgg预训练模型操作
作者:GodWriter 发布时间:2023-10-13 10:56:23
标签:Tensorflow,加载,Vgg,模型
很多深度神经网络模型需要加载预训练过的Vgg参数,比如说:风格迁移、目标检测、图像标注等计算机视觉中常见的任务。那么到底如何加载Vgg模型呢?Vgg文件的参数到底有何意义呢?加载后的模型该如何使用呢?
本文将以Vgg19为例子,详细说明Tensorflow如何加载Vgg预训练模型。
实验环境
GTX1050-ti, cuda9.0
Window10, Tensorflow 1.12
展示Vgg19构造
import tensorflow as tf
import numpy as np
import scipy.io
data_path = 'model/vgg19.mat' # data_path指下载下来的Vgg19预训练模型的文件地址
# 读取Vgg19文件
data = scipy.io.loadmat(data_path)
# 打印Vgg19的数据类型及其组成
print("type: ", type(data))
print("data.keys: ", data.keys())
# 得到对应卷积核的矩阵
weights = data['layers'][0]
# 定义Vgg19的组成
layers = (
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1',
'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3',
'relu3_3', 'conv3_4', 'relu3_4', 'pool3',
'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3',
'relu4_3', 'conv4_4', 'relu4_4', 'pool4',
'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3',
'relu5_3', 'conv5_4', 'relu5_4'
)
# 打印Vgg19不同卷积层所对应的维度
for i, name in enumerate(layers):
kind = name[:4]
if kind == 'conv':
print("%s: %s" % (name, weights[i][0][0][2][0][0].shape))
elif kind == 'relu':
print(name)
elif kind == 'pool':
print(name)
代码输出结果如下:
type: <class 'dict'>
data.keys: dict_keys(['__header__', '__version__', '__globals__', 'layers', 'meta'])
conv1_1: (3, 3, 3, 64)
relu1_1
conv1_2: (3, 3, 64, 64)
relu1_2
pool1
conv2_1: (3, 3, 64, 128)
relu2_1
conv2_2: (3, 3, 128, 128)
relu2_2
pool2
conv3_1: (3, 3, 128, 256)
relu3_1
conv3_2: (3, 3, 256, 256)
relu3_2
conv3_3: (3, 3, 256, 256)
relu3_3
conv3_4: (3, 3, 256, 256)
relu3_4
pool3
conv4_1: (3, 3, 256, 512)
relu4_1
conv4_2: (3, 3, 512, 512)
relu4_2
conv4_3: (3, 3, 512, 512)
relu4_3
conv4_4: (3, 3, 512, 512)
relu4_4
pool4
conv5_1: (3, 3, 512, 512)
relu5_1
conv5_2: (3, 3, 512, 512)
relu5_2
conv5_3: (3, 3, 512, 512)
relu5_3
conv5_4: (3, 3, 512, 512)
relu5_4
那么Vgg19真实的网络结构是怎么样子的呢,如下图所示:
在本文,主要讨论卷积模块,大家通过对比可以发现,我们打印出来的Vgg19结构及其卷积核的构造的确如论文中给出的Vgg19结构一致。
构建Vgg19模型
def _conv_layer(input, weights, bias):
conv = tf.nn.conv2d(input, tf.constant(weights), strides=(1, 1, 1, 1),
padding='SAME')
return tf.nn.bias_add(conv, bias)
def _pool_layer(input):
return tf.nn.max_pool(input, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1),
padding='SAME')
class VGG19:
layers = (
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1',
'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3',
'relu3_3', 'conv3_4', 'relu3_4', 'pool3',
'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3',
'relu4_3', 'conv4_4', 'relu4_4', 'pool4',
'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3',
'relu5_3', 'conv5_4', 'relu5_4'
)
def __init__(self, data_path):
data = scipy.io.loadmat(data_path)
self.weights = data['layers'][0]
def feed_forward(self, input_image, scope=None):
# 定义net用来保存模型每一步输出的特征图
net = {}
current = input_image
with tf.variable_scope(scope):
for i, name in enumerate(self.layers):
kind = name[:4]
if kind == 'conv':
kernels = self.weights[i][0][0][2][0][0]
bias = self.weights[i][0][0][2][0][1]
kernels = np.transpose(kernels, (1, 0, 2, 3))
bias = bias.reshape(-1)
current = _conv_layer(current, kernels, bias)
elif kind == 'relu':
current = tf.nn.relu(current)
elif kind == 'pool':
current = _pool_layer(current)
# 在每一步都保存当前输出的特征图
net[name] = current
return net
在上面的代码中,我们定义了一个Vgg19的类别专门用来加载Vgg19模型,并且将每一层卷积得到的特征图保存到net中,最后返回这个net,用于代码后续的处理。
测试Vgg19模型
在给出Vgg19的构造模型后,我们下一步就是如何用它,我们的思路如下:
加载本地图片
定义Vgg19模型,传入本地图片
得到返回每一层的特征图
image_path = "data/test.jpg" # 本地的测试图片
image_raw = tf.gfile.GFile(image_path, 'rb').read()
# 一定要tf.float(),否则会报错
image_decoded = tf.to_float(tf.image.decode_jpeg(image_raw))
# 扩展图片的维度,从三维变成四维,符合Vgg19的输入接口
image_expand_dim = tf.expand_dims(image_decoded, 0)
# 定义Vgg19模型
vgg19 = VGG19(data_path)
net = vgg19.feed_forward(image_expand_dim, 'vgg19')
print(net)
代码结果如下所示:
{'conv1_1': <tf.Tensor 'vgg19_1/BiasAdd:0' shape=(1, ?, ?, 64) dtype=float32>,
'relu1_1': <tf.Tensor 'vgg19_1/Relu:0' shape=(1, ?, ?, 64) dtype=float32>,
'conv1_2': <tf.Tensor 'vgg19_1/BiasAdd_1:0' shape=(1, ?, ?, 64) dtype=float32>,
'relu1_2': <tf.Tensor 'vgg19_1/Relu_1:0' shape=(1, ?, ?, 64) dtype=float32>,
'pool1': <tf.Tensor 'vgg19_1/MaxPool:0' shape=(1, ?, ?, 64) dtype=float32>,
'conv2_1': <tf.Tensor 'vgg19_1/BiasAdd_2:0' shape=(1, ?, ?, 128) dtype=float32>,
'relu2_1': <tf.Tensor 'vgg19_1/Relu_2:0' shape=(1, ?, ?, 128) dtype=float32>,
'conv2_2': <tf.Tensor 'vgg19_1/BiasAdd_3:0' shape=(1, ?, ?, 128) dtype=float32>,
'relu2_2': <tf.Tensor 'vgg19_1/Relu_3:0' shape=(1, ?, ?, 128) dtype=float32>,
'pool2': <tf.Tensor 'vgg19_1/MaxPool_1:0' shape=(1, ?, ?, 128) dtype=float32>,
'conv3_1': <tf.Tensor 'vgg19_1/BiasAdd_4:0' shape=(1, ?, ?, 256) dtype=float32>,
'relu3_1': <tf.Tensor 'vgg19_1/Relu_4:0' shape=(1, ?, ?, 256) dtype=float32>,
'conv3_2': <tf.Tensor 'vgg19_1/BiasAdd_5:0' shape=(1, ?, ?, 256) dtype=float32>,
'relu3_2': <tf.Tensor 'vgg19_1/Relu_5:0' shape=(1, ?, ?, 256) dtype=float32>,
'conv3_3': <tf.Tensor 'vgg19_1/BiasAdd_6:0' shape=(1, ?, ?, 256) dtype=float32>,
'relu3_3': <tf.Tensor 'vgg19_1/Relu_6:0' shape=(1, ?, ?, 256) dtype=float32>,
'conv3_4': <tf.Tensor 'vgg19_1/BiasAdd_7:0' shape=(1, ?, ?, 256) dtype=float32>,
'relu3_4': <tf.Tensor 'vgg19_1/Relu_7:0' shape=(1, ?, ?, 256) dtype=float32>,
'pool3': <tf.Tensor 'vgg19_1/MaxPool_2:0' shape=(1, ?, ?, 256) dtype=float32>,
'conv4_1': <tf.Tensor 'vgg19_1/BiasAdd_8:0' shape=(1, ?, ?, 512) dtype=float32>,
'relu4_1': <tf.Tensor 'vgg19_1/Relu_8:0' shape=(1, ?, ?, 512) dtype=float32>,
'conv4_2': <tf.Tensor 'vgg19_1/BiasAdd_9:0' shape=(1, ?, ?, 512) dtype=float32>,
'relu4_2': <tf.Tensor 'vgg19_1/Relu_9:0' shape=(1, ?, ?, 512) dtype=float32>,
'conv4_3': <tf.Tensor 'vgg19_1/BiasAdd_10:0' shape=(1, ?, ?, 512) dtype=float32>,
'relu4_3': <tf.Tensor 'vgg19_1/Relu_10:0' shape=(1, ?, ?, 512) dtype=float32>,
'conv4_4': <tf.Tensor 'vgg19_1/BiasAdd_11:0' shape=(1, ?, ?, 512) dtype=float32>,
'relu4_4': <tf.Tensor 'vgg19_1/Relu_11:0' shape=(1, ?, ?, 512) dtype=float32>,
'pool4': <tf.Tensor 'vgg19_1/MaxPool_3:0' shape=(1, ?, ?, 512) dtype=float32>,
'conv5_1': <tf.Tensor 'vgg19_1/BiasAdd_12:0' shape=(1, ?, ?, 512) dtype=float32>,
'relu5_1': <tf.Tensor 'vgg19_1/Relu_12:0' shape=(1, ?, ?, 512) dtype=float32>,
'conv5_2': <tf.Tensor 'vgg19_1/BiasAdd_13:0' shape=(1, ?, ?, 512) dtype=float32>,
'relu5_2': <tf.Tensor 'vgg19_1/Relu_13:0' shape=(1, ?, ?, 512) dtype=float32>,
'conv5_3': <tf.Tensor 'vgg19_1/BiasAdd_14:0' shape=(1, ?, ?, 512) dtype=float32>,
'relu5_3': <tf.Tensor 'vgg19_1/Relu_14:0' shape=(1, ?, ?, 512) dtype=float32>,
'conv5_4': <tf.Tensor 'vgg19_1/BiasAdd_15:0' shape=(1, ?, ?, 512) dtype=float32>,
'relu5_4': <tf.Tensor 'vgg19_1/Relu_15:0' shape=(1, ?, ?, 512) dtype=float32>}
本文提供的测试代码是完成正确的,已经避免了很多使用Vgg19预训练模型的坑操作,比如:给图片添加维度,转换读取图片的的格式等,为什么这么做的详细原因可参考我的另一篇博客:Tensorflow加载Vgg预训练模型的几个注意事项。
到这里,如何使用tensorflow读取Vgg19模型结束了,若是大家有其他疑惑,可在评论区留言,会定时回答。
来源:https://blog.csdn.net/GodWriter/article/details/88082471


猜你喜欢
- 问题:我正尝试使用matplotlib读取RGB图像并将其转换为灰度。在matlab中,我使用这个:img = rgb2gray(imrea
- Mysql的安装方法 安装mysql的步骤如下:请注意按图中所示,有些选项和默认是不一样的。同时,如果您是重新安装mysql的话,要注意先备
- 如果进入了shell交互窗口,python的退出方式只能够用函数不能够用命令,这有时候让人感觉到很不习惯。因为函数会比命令多一个括号的输入,
- python 中sorted与sort有什么区别sort(cmp=None, key=None, reverse=False)sorted(
- 一、背景近期项目即将开展,计划第一步就是实现数据的可视化,所以先学习一下数据展示相关Demo。选用Python2.7与Matplotlib来
- (1)选择最有效率的表名顺序(只在基于规则的优化器中有效):Oracle的解析器按照从右到左的顺序处理FROM子句中的表名,FROM子句中写
- 360搜索引擎自动收录功能,官方提供了代码,带式,十分坑爹,没有提供批量提交入口,只是提供了一段js代码,关键是 一个js去下载另外一个js
- MySQL 临时表在我们需要保存一些临时数据时是非常有用的。临时表只在当前连接可见,当关闭连接时,Mysql会自动删除表并释放所有空间。临时
- 1、简介在python自动化中,我们传递一些参数是需要从文件中读取过来的,读取过来的字典并非python对象数据类型而是string类型。这
- 之前一直使用hdfs的命令进行hdfs操作,比如:hdfs dfs -ls /user/spark/hdfs dfs -get /user/
- 1. 前言由于近期有任务需要,要写一个能够处理Excel的脚本,实现的功能是,在A表格上其中一列,对字符串进行分组和排序,然后根据排序好的A
- ASP给图片加水印是需要组件的...常用的有aspjpeg软件和中国人自己开发的wsImage软件,可以上网搜索下载这两个软件,推荐使用咱们
- 我就废话不多说了,大家还是直接看代码吧~type Animal struct { ID int64 Name string `gorm:&q
- 写项目时,发现 element 里的图标没有我需要的图标,两种情况:① 简单的替换小图标,没有选中变色等要求② 有选中变色等要求,稍微复杂的
- 在本章中,我们将学习如何使用 Bootstrap 创建表单。Bootstrap 通过一些简单的 HTML 标签和扩展的类即可创建
- 一、使用 PyCharm 软件安装 pandas 包1、打开 PyCharm2、点击右上角 “Files” →“Settings...”3、
- Microsoft? SQL Server? 2000 提供了两种主要机制来强制业务规则和数据完整性:约束和触发器。触发器是一种特殊类型的存
- 一 前言 提出这个问题,是因为在工作中发现 mysql 中的 user 表的 id 默认
- 前言最近在学习python 爬虫方面的知识,网上有一博客专栏专门写爬虫方面的,看到用urllib请求有道翻译接口获取翻译结果。发现接口变化很
- 本文实例为大家分享了js全选操作的具体代码,供大家参考,具体内容如下<html><head><meta htt