详解Tensorflow数据读取有三种方式(next_batch)
作者:Dean0Winchester 发布时间:2023-08-10 07:30:42
Tensorflow数据读取有三种方式:
Preloaded data: 预加载数据
Feeding: Python产生数据,再把数据喂给后端。
Reading from file: 从文件中直接读取
这三种有读取方式有什么区别呢? 我们首先要知道TensorFlow(TF)是怎么样工作的。
TF的核心是用C++写的,这样的好处是运行快,缺点是调用不灵活。而Python恰好相反,所以结合两种语言的优势。涉及计算的核心算子和运行框架是用C++写的,并提供API给Python。Python调用这些API,设计训练模型(Graph),再将设计好的Graph给后端去执行。简而言之,Python的角色是Design,C++是Run。
一、预加载数据:
import tensorflow as tf
# 设计Graph
x1 = tf.constant([2, 3, 4])
x2 = tf.constant([4, 0, 1])
y = tf.add(x1, x2)
# 打开一个session --> 计算y
with tf.Session() as sess:
print sess.run(y)
二、python产生数据,再将数据喂给后端
import tensorflow as tf
# 设计Graph
x1 = tf.placeholder(tf.int16)
x2 = tf.placeholder(tf.int16)
y = tf.add(x1, x2)
# 用Python产生数据
li1 = [2, 3, 4]
li2 = [4, 0, 1]
# 打开一个session --> 喂数据 --> 计算y
with tf.Session() as sess:
print sess.run(y, feed_dict={x1: li1, x2: li2})
说明:在这里x1, x2只是占位符,没有具体的值,那么运行的时候去哪取值呢?这时候就要用到sess.run()中的feed_dict参数,将Python产生的数据喂给后端,并计算y。
这两种方案的缺点:
1、预加载:将数据直接内嵌到Graph中,再把Graph传入Session中运行。当数据量比较大时,Graph的传输会遇到效率问题。
2、用占位符替代数据,待运行的时候填充数据。
前两种方法很方便,但是遇到大型数据的时候就会很吃力,即使是Feeding,中间环节的增加也是不小的开销,比如数据类型转换等等。最优的方案就是在Graph定义好文件读取的方法,让TF自己去从文件中读取数据,并解码成可使用的样本集。
三、从文件中读取,简单来说就是将数据读取模块的图搭好
1、准备数据,构造三个文件,A.csv,B.csv,C.csv
$ echo -e "Alpha1,A1\nAlpha2,A2\nAlpha3,A3" > A.csv
$ echo -e "Bee1,B1\nBee2,B2\nBee3,B3" > B.csv
$ echo -e "Sea1,C1\nSea2,C2\nSea3,C3" > C.csv
2、单个Reader,单个样本
#-*- coding:utf-8 -*-
import tensorflow as tf
# 生成一个先入先出队列和一个QueueRunner,生成文件名队列
filenames = ['A.csv', 'B.csv', 'C.csv']
filename_queue = tf.train.string_input_producer(filenames, shuffle=False)
# 定义Reader
reader = tf.TextLineReader()
key, value = reader.read(filename_queue)
# 定义Decoder
example, label = tf.decode_csv(value, record_defaults=[['null'], ['null']])
#example_batch, label_batch = tf.train.shuffle_batch([example,label], batch_size=1, capacity=200, min_after_dequeue=100, num_threads=2)
# 运行Graph
with tf.Session() as sess:
coord = tf.train.Coordinator() #创建一个协调器,管理线程
threads = tf.train.start_queue_runners(coord=coord) #启动QueueRunner, 此时文件名队列已经进队。
for i in range(10):
print example.eval(),label.eval()
coord.request_stop()
coord.join(threads)
说明:这里没有使用tf.train.shuffle_batch,会导致生成的样本和label之间对应不上,乱序了。生成结果如下:
Alpha1 A2
Alpha3 B1
Bee2 B3
Sea1 C2
Sea3 A1
Alpha2 A3
Bee1 B2
Bee3 C1
Sea2 C3
Alpha1 A2
解决方案:用tf.train.shuffle_batch,那么生成的结果就能够对应上。
#-*- coding:utf-8 -*-
import tensorflow as tf
# 生成一个先入先出队列和一个QueueRunner,生成文件名队列
filenames = ['A.csv', 'B.csv', 'C.csv']
filename_queue = tf.train.string_input_producer(filenames, shuffle=False)
# 定义Reader
reader = tf.TextLineReader()
key, value = reader.read(filename_queue)
# 定义Decoder
example, label = tf.decode_csv(value, record_defaults=[['null'], ['null']])
example_batch, label_batch = tf.train.shuffle_batch([example,label], batch_size=1, capacity=200, min_after_dequeue=100, num_threads=2)
# 运行Graph
with tf.Session() as sess:
coord = tf.train.Coordinator() #创建一个协调器,管理线程
threads = tf.train.start_queue_runners(coord=coord) #启动QueueRunner, 此时文件名队列已经进队。
for i in range(10):
e_val,l_val = sess.run([example_batch, label_batch])
print e_val,l_val
coord.request_stop()
coord.join(threads)
3、单个Reader,多个样本,主要也是通过tf.train.shuffle_batch来实现
#-*- coding:utf-8 -*-
import tensorflow as tf
filenames = ['A.csv', 'B.csv', 'C.csv']
filename_queue = tf.train.string_input_producer(filenames, shuffle=False)
reader = tf.TextLineReader()
key, value = reader.read(filename_queue)
example, label = tf.decode_csv(value, record_defaults=[['null'], ['null']])
# 使用tf.train.batch()会多加了一个样本队列和一个QueueRunner。
#Decoder解后数据会进入这个队列,再批量出队。
# 虽然这里只有一个Reader,但可以设置多线程,相应增加线程数会提高读取速度,但并不是线程越多越好。
example_batch, label_batch = tf.train.batch(
[example, label], batch_size=5)
with tf.Session() as sess:
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for i in range(10):
e_val,l_val = sess.run([example_batch,label_batch])
print e_val,l_val
coord.request_stop()
coord.join(threads)
说明:下面这种写法,提取出来的batch_size个样本,特征和label之间也是不同步的
#-*- coding:utf-8 -*-
import tensorflow as tf
filenames = ['A.csv', 'B.csv', 'C.csv']
filename_queue = tf.train.string_input_producer(filenames, shuffle=False)
reader = tf.TextLineReader()
key, value = reader.read(filename_queue)
example, label = tf.decode_csv(value, record_defaults=[['null'], ['null']])
# 使用tf.train.batch()会多加了一个样本队列和一个QueueRunner。
#Decoder解后数据会进入这个队列,再批量出队。
# 虽然这里只有一个Reader,但可以设置多线程,相应增加线程数会提高读取速度,但并不是线程越多越好。
example_batch, label_batch = tf.train.batch(
[example, label], batch_size=5)
with tf.Session() as sess:
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for i in range(10):
print example_batch.eval(), label_batch.eval()
coord.request_stop()
coord.join(threads)
说明:输出结果如下:可以看出feature和label之间是不对应的
['Alpha1' 'Alpha2' 'Alpha3' 'Bee1' 'Bee2'] ['B3' 'C1' 'C2' 'C3' 'A1']
['Alpha2' 'Alpha3' 'Bee1' 'Bee2' 'Bee3'] ['C1' 'C2' 'C3' 'A1' 'A2']
['Alpha3' 'Bee1' 'Bee2' 'Bee3' 'Sea1'] ['C2' 'C3' 'A1' 'A2' 'A3']
4、多个reader,多个样本
#-*- coding:utf-8 -*-
import tensorflow as tf
filenames = ['A.csv', 'B.csv', 'C.csv']
filename_queue = tf.train.string_input_producer(filenames, shuffle=False)
reader = tf.TextLineReader()
key, value = reader.read(filename_queue)
record_defaults = [['null'], ['null']]
#定义了多种解码器,每个解码器跟一个reader相连
example_list = [tf.decode_csv(value, record_defaults=record_defaults)
for _ in range(2)] # Reader设置为2
# 使用tf.train.batch_join(),可以使用多个reader,并行读取数据。每个Reader使用一个线程。
example_batch, label_batch = tf.train.batch_join(
example_list, batch_size=5)
with tf.Session() as sess:
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for i in range(10):
e_val,l_val = sess.run([example_batch,label_batch])
print e_val,l_val
coord.request_stop()
coord.join(threads)
tf.train.batch与tf.train.shuffle_batch函数是单个Reader读取,但是可以多线程。tf.train.batch_join与tf.train.shuffle_batch_join可设置多Reader读取,每个Reader使用一个线程。至于两种方法的效率,单Reader时,2个线程就达到了速度的极限。多Reader时,2个Reader就达到了极限。所以并不是线程越多越快,甚至更多的线程反而会使效率下降。
5、迭代控制,设置epoch参数,指定我们的样本在训练的时候只能被用多少轮
#-*- coding:utf-8 -*-
import tensorflow as tf
filenames = ['A.csv', 'B.csv', 'C.csv']
#num_epoch: 设置迭代数
filename_queue = tf.train.string_input_producer(filenames, shuffle=False,num_epochs=3)
reader = tf.TextLineReader()
key, value = reader.read(filename_queue)
record_defaults = [['null'], ['null']]
#定义了多种解码器,每个解码器跟一个reader相连
example_list = [tf.decode_csv(value, record_defaults=record_defaults)
for _ in range(2)] # Reader设置为2
# 使用tf.train.batch_join(),可以使用多个reader,并行读取数据。每个Reader使用一个线程。
example_batch, label_batch = tf.train.batch_join(
example_list, batch_size=1)
#初始化本地变量
init_local_op = tf.initialize_local_variables()
with tf.Session() as sess:
sess.run(init_local_op)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
try:
while not coord.should_stop():
e_val,l_val = sess.run([example_batch,label_batch])
print e_val,l_val
except tf.errors.OutOfRangeError:
print('Epochs Complete!')
finally:
coord.request_stop()
coord.join(threads)
coord.request_stop()
coord.join(threads)
在迭代控制中,记得添加tf.initialize_local_variables(),官网教程没有说明,但是如果不初始化,运行就会报错。
对于传统的机器学习而言,比方说分类问题,[x1 x2 x3]是feature。对于二分类问题,label经过one-hot编码之后就会是[0,1]或者[1,0]。一般情况下,我们会考虑将数据组织在csv文件中,一行代表一个sample。然后使用队列的方式去读取数据
说明:对于该数据,前三列代表的是feature,因为是分类问题,后两列就是经过one-hot编码之后得到的label
使用队列读取该csv文件的代码如下:
#-*- coding:utf-8 -*-
import tensorflow as tf
# 生成一个先入先出队列和一个QueueRunner,生成文件名队列
filenames = ['A.csv']
filename_queue = tf.train.string_input_producer(filenames, shuffle=False)
# 定义Reader
reader = tf.TextLineReader()
key, value = reader.read(filename_queue)
# 定义Decoder
record_defaults = [[1], [1], [1], [1], [1]]
col1, col2, col3, col4, col5 = tf.decode_csv(value,record_defaults=record_defaults)
features = tf.pack([col1, col2, col3])
label = tf.pack([col4,col5])
example_batch, label_batch = tf.train.shuffle_batch([features,label], batch_size=2, capacity=200, min_after_dequeue=100, num_threads=2)
# 运行Graph
with tf.Session() as sess:
coord = tf.train.Coordinator() #创建一个协调器,管理线程
threads = tf.train.start_queue_runners(coord=coord) #启动QueueRunner, 此时文件名队列已经进队。
for i in range(10):
e_val,l_val = sess.run([example_batch, label_batch])
print e_val,l_val
coord.request_stop()
coord.join(threads)
输出结果如下:
说明:
record_defaults = [[1], [1], [1], [1], [1]]
代表解析的模板,每个样本有5列,在数据中是默认用‘,'隔开的,然后解析的标准是[1],也即每一列的数值都解析为整型。[1.0]就是解析为浮点,['null']解析为string类型
二、此处给出了几种不同的next_batch方法,该文章只是做出代码片段的解释,以备以后查看:
def next_batch(self, batch_size, fake_data=False):
"""Return the next `batch_size` examples from this data set."""
if fake_data:
fake_image = [1] * 784
if self.one_hot:
fake_label = [1] + [0] * 9
else:
fake_label = 0
return [fake_image for _ in xrange(batch_size)], [
fake_label for _ in xrange(batch_size)
]
start = self._index_in_epoch
self._index_in_epoch += batch_size
if self._index_in_epoch > self._num_examples: # epoch中的句子下标是否大于所有语料的个数,如果为True,开始新一轮的遍历
# Finished epoch
self._epochs_completed += 1
# Shuffle the data
perm = numpy.arange(self._num_examples) # arange函数用于创建等差数组
numpy.random.shuffle(perm) # 打乱
self._images = self._images[perm]
self._labels = self._labels[perm]
# Start next epoch
start = 0
self._index_in_epoch = batch_size
assert batch_size <= self._num_examples
end = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
该段代码摘自mnist.py文件,从代码第12行start = self._index_in_epoch开始解释,_index_in_epoch-1是上一次batch个图片中最后一张图片的下边,这次epoch第一张图片的下标是从 _index_in_epoch开始,最后一张图片的下标是_index_in_epoch+batch, 如果 _index_in_epoch 大于语料中图片的个数,表示这个epoch是不合适的,就算是完成了语料的一遍的遍历,所以应该对图片洗牌然后开始新一轮的语料组成batch开始
def ptb_iterator(raw_data, batch_size, num_steps):
"""Iterate on the raw PTB data.
This generates batch_size pointers into the raw PTB data, and allows
minibatch iteration along these pointers.
Args:
raw_data: one of the raw data outputs from ptb_raw_data.
batch_size: int, the batch size.
num_steps: int, the number of unrolls.
Yields:
Pairs of the batched data, each a matrix of shape [batch_size, num_steps].
The second element of the tuple is the same data time-shifted to the
right by one.
Raises:
ValueError: if batch_size or num_steps are too high.
"""
raw_data = np.array(raw_data, dtype=np.int32)
data_len = len(raw_data)
batch_len = data_len // batch_size #有多少个batch
data = np.zeros([batch_size, batch_len], dtype=np.int32) # batch_len 有多少个单词
for i in range(batch_size): # batch_size 有多少个batch
data[i] = raw_data[batch_len * i:batch_len * (i + 1)]
epoch_size = (batch_len - 1) // num_steps # batch_len 是指一个batch中有多少个句子
#epoch_size = ((len(data) // model.batch_size) - 1) // model.num_steps # // 表示整数除法
if epoch_size == 0:
raise ValueError("epoch_size == 0, decrease batch_size or num_steps")
for i in range(epoch_size):
x = data[:, i*num_steps:(i+1)*num_steps]
y = data[:, i*num_steps+1:(i+1)*num_steps+1]
yield (x, y)
第三种方式:
def next(self, batch_size):
""" Return a batch of data. When dataset end is reached, start over.
"""
if self.batch_id == len(self.data):
self.batch_id = 0
batch_data = (self.data[self.batch_id:min(self.batch_id +
batch_size, len(self.data))])
batch_labels = (self.labels[self.batch_id:min(self.batch_id +
batch_size, len(self.data))])
batch_seqlen = (self.seqlen[self.batch_id:min(self.batch_id +
batch_size, len(self.data))])
self.batch_id = min(self.batch_id + batch_size, len(self.data))
return batch_data, batch_labels, batch_seqlen
第四种方式:
def batch_iter(sourceData, batch_size, num_epochs, shuffle=True):
data = np.array(sourceData) # 将sourceData转换为array存储
data_size = len(sourceData)
num_batches_per_epoch = int(len(sourceData) / batch_size) + 1
for epoch in range(num_epochs):
# Shuffle the data at each epoch
if shuffle:
shuffle_indices = np.random.permutation(np.arange(data_size))
shuffled_data = sourceData[shuffle_indices]
else:
shuffled_data = sourceData
for batch_num in range(num_batches_per_epoch):
start_index = batch_num * batch_size
end_index = min((batch_num + 1) * batch_size, data_size)
yield shuffled_data[start_index:end_index]
迭代器的用法,具体学习Python迭代器的用法
另外需要注意的是,前三种方式只是所有语料遍历一次,而最后一种方法是,所有语料遍历了num_epochs次
来源:http://blog.csdn.net/qq_38906523/article/details/78956503


猜你喜欢
- return 语句就是讲结果返回到调用的地方,并把程序的控制权一起返回程序运行到所遇到的第一个return即返回(退出def块),不会再运行
- 主键与外键的关系,通俗点儿讲,我现在有一个论坛,有两张表,一张是主贴 thread,一张是回帖 reply先说说主键,主键是表里面唯一识别记
- 什么是分页技术 分页,是一种将所有数据分段展示给用户的技术.用户每次看到的不是全部数据,而是其中的一部分,如果在其中没有找到自习自
- 如果在子类中需要父类的构造方法就需要显式地调用父类的构造方法,或者不重写父类的构造方法。子类不重写 __init__,实例化子类时,会自动调
- 这篇文章主要介绍了Python OrderedDict的使用案例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值
- 概述Redis是一个开源,先进的key-value存储,并用于构建高性能,可扩展的Web应用程序的完美解决方案。Redis从它的许多竞争继承
- MySQL是一款关系型数据库管理系统,是由Oracle旗下公司MySQL AB 公司开发,是在web方面最好的、最流行的关系型数据库软件应用
- 问题:有一个列表,每一个条目都是这篇文章的部分内容,类似这样:<div class="list">
- 本文实例讲述了Python实现的对本地host127.0.0.1主机进行扫描端口功能。分享给大家供大家参考,具体如下:前面一篇《Python
- python3 在服务器上打印资产信息pip3 install prettytableurl 为 资产信息接口地址,返回为json信息。#
- Python配对函数zip()1、zip将列表、元组或其他序列的元素进行配对新建成一个元组构成的列表,它生成列表长度由最短的序列决定:#zi
- 事件冒泡、事件捕获和事件委托在javascript里,事件委托是很重要的一个东西,事件委托依靠的就是事件冒泡和捕获的机制,我先来解释一下事件
- 表操作 例 1 对于表的教学管理数据库中的表 STUDENTS ,可以定义如
- 一、项目说明在日常生活中,我们经常会存取一些朋友们的丑照,在这个项目中,我们以萌萌哒的熊猫头作为背景,然后试着在背景图上加入朋友们的照片。效
- 本文实例讲述了Python实现查找系统盘中需要找的字符。分享给大家供大家参考。具体如下:'''Created on
- 前言采集教务系统成绩单是一个非常有意义的项目。在现代教育中,教务系统已经成为了学校管理和教学工作的重要组成部分。然而,由于各种原因,教务系统
- 最近研究微信API,发现个非常好用的python库:wxpy。wxpy基于itchat,使用了 Web 微信的通讯协议,实现了微信登录、收发
- 在vue项目中需要监听window窗口变化来时时计算图片的高度,于是就加了一个监听事件;确实监听到了,但是在离开当前页面进入其他页面改变窗口
- 前言ECMAScript 6.0(以下简称 ES6)是 JavaScript 语言的下一代标准,已经在2015年6月正式发布了。它的目标,是
- 深度学习中,模型训练完后,查看模型的参数量和浮点计算量,在此记录下:1 THOP在pytorch中有现成的包thop用于计算参数数量和FLO