keras实现调用自己训练的模型,并去掉全连接层
作者:Tom Hardy 发布时间:2023-08-10 16:34:21
标签:keras,训练,模型,全连接层
其实很简单
from keras.models import load_model
base_model = load_model('model_resenet.h5')#加载指定的模型
print(base_model.summary())#输出网络的结构图
这是我的网络模型的输出,其实就是它的结构图
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) (None, 227, 227, 1) 0
__________________________________________________________________________________________________
conv2d_1 (Conv2D) (None, 225, 225, 32) 320 input_1[0][0]
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, 225, 225, 32) 128 conv2d_1[0][0]
__________________________________________________________________________________________________
activation_1 (Activation) (None, 225, 225, 32) 0 batch_normalization_1[0][0]
__________________________________________________________________________________________________
conv2d_2 (Conv2D) (None, 225, 225, 32) 9248 activation_1[0][0]
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, 225, 225, 32) 128 conv2d_2[0][0]
__________________________________________________________________________________________________
activation_2 (Activation) (None, 225, 225, 32) 0 batch_normalization_2[0][0]
__________________________________________________________________________________________________
conv2d_3 (Conv2D) (None, 225, 225, 32) 9248 activation_2[0][0]
__________________________________________________________________________________________________
batch_normalization_3 (BatchNor (None, 225, 225, 32) 128 conv2d_3[0][0]
__________________________________________________________________________________________________
merge_1 (Merge) (None, 225, 225, 32) 0 batch_normalization_3[0][0]
activation_1[0][0]
__________________________________________________________________________________________________
activation_3 (Activation) (None, 225, 225, 32) 0 merge_1[0][0]
__________________________________________________________________________________________________
conv2d_4 (Conv2D) (None, 225, 225, 32) 9248 activation_3[0][0]
__________________________________________________________________________________________________
batch_normalization_4 (BatchNor (None, 225, 225, 32) 128 conv2d_4[0][0]
__________________________________________________________________________________________________
activation_4 (Activation) (None, 225, 225, 32) 0 batch_normalization_4[0][0]
__________________________________________________________________________________________________
conv2d_5 (Conv2D) (None, 225, 225, 32) 9248 activation_4[0][0]
__________________________________________________________________________________________________
batch_normalization_5 (BatchNor (None, 225, 225, 32) 128 conv2d_5[0][0]
__________________________________________________________________________________________________
merge_2 (Merge) (None, 225, 225, 32) 0 batch_normalization_5[0][0]
activation_3[0][0]
__________________________________________________________________________________________________
activation_5 (Activation) (None, 225, 225, 32) 0 merge_2[0][0]
__________________________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D) (None, 112, 112, 32) 0 activation_5[0][0]
__________________________________________________________________________________________________
conv2d_6 (Conv2D) (None, 110, 110, 64) 18496 max_pooling2d_1[0][0]
__________________________________________________________________________________________________
batch_normalization_6 (BatchNor (None, 110, 110, 64) 256 conv2d_6[0][0]
__________________________________________________________________________________________________
activation_6 (Activation) (None, 110, 110, 64) 0 batch_normalization_6[0][0]
__________________________________________________________________________________________________
conv2d_7 (Conv2D) (None, 110, 110, 64) 36928 activation_6[0][0]
__________________________________________________________________________________________________
batch_normalization_7 (BatchNor (None, 110, 110, 64) 256 conv2d_7[0][0]
__________________________________________________________________________________________________
activation_7 (Activation) (None, 110, 110, 64) 0 batch_normalization_7[0][0]
__________________________________________________________________________________________________
conv2d_8 (Conv2D) (None, 110, 110, 64) 36928 activation_7[0][0]
__________________________________________________________________________________________________
batch_normalization_8 (BatchNor (None, 110, 110, 64) 256 conv2d_8[0][0]
__________________________________________________________________________________________________
merge_3 (Merge) (None, 110, 110, 64) 0 batch_normalization_8[0][0]
activation_6[0][0]
__________________________________________________________________________________________________
activation_8 (Activation) (None, 110, 110, 64) 0 merge_3[0][0]
__________________________________________________________________________________________________
conv2d_9 (Conv2D) (None, 110, 110, 64) 36928 activation_8[0][0]
__________________________________________________________________________________________________
batch_normalization_9 (BatchNor (None, 110, 110, 64) 256 conv2d_9[0][0]
__________________________________________________________________________________________________
activation_9 (Activation) (None, 110, 110, 64) 0 batch_normalization_9[0][0]
__________________________________________________________________________________________________
conv2d_10 (Conv2D) (None, 110, 110, 64) 36928 activation_9[0][0]
__________________________________________________________________________________________________
batch_normalization_10 (BatchNo (None, 110, 110, 64) 256 conv2d_10[0][0]
__________________________________________________________________________________________________
merge_4 (Merge) (None, 110, 110, 64) 0 batch_normalization_10[0][0]
activation_8[0][0]
__________________________________________________________________________________________________
activation_10 (Activation) (None, 110, 110, 64) 0 merge_4[0][0]
__________________________________________________________________________________________________
max_pooling2d_2 (MaxPooling2D) (None, 55, 55, 64) 0 activation_10[0][0]
__________________________________________________________________________________________________
conv2d_11 (Conv2D) (None, 53, 53, 64) 36928 max_pooling2d_2[0][0]
__________________________________________________________________________________________________
batch_normalization_11 (BatchNo (None, 53, 53, 64) 256 conv2d_11[0][0]
__________________________________________________________________________________________________
activation_11 (Activation) (None, 53, 53, 64) 0 batch_normalization_11[0][0]
__________________________________________________________________________________________________
max_pooling2d_3 (MaxPooling2D) (None, 26, 26, 64) 0 activation_11[0][0]
__________________________________________________________________________________________________
conv2d_12 (Conv2D) (None, 26, 26, 64) 36928 max_pooling2d_3[0][0]
__________________________________________________________________________________________________
batch_normalization_12 (BatchNo (None, 26, 26, 64) 256 conv2d_12[0][0]
__________________________________________________________________________________________________
activation_12 (Activation) (None, 26, 26, 64) 0 batch_normalization_12[0][0]
__________________________________________________________________________________________________
conv2d_13 (Conv2D) (None, 26, 26, 64) 36928 activation_12[0][0]
__________________________________________________________________________________________________
batch_normalization_13 (BatchNo (None, 26, 26, 64) 256 conv2d_13[0][0]
__________________________________________________________________________________________________
merge_5 (Merge) (None, 26, 26, 64) 0 batch_normalization_13[0][0]
max_pooling2d_3[0][0]
__________________________________________________________________________________________________
activation_13 (Activation) (None, 26, 26, 64) 0 merge_5[0][0]
__________________________________________________________________________________________________
conv2d_14 (Conv2D) (None, 26, 26, 64) 36928 activation_13[0][0]
__________________________________________________________________________________________________
batch_normalization_14 (BatchNo (None, 26, 26, 64) 256 conv2d_14[0][0]
__________________________________________________________________________________________________
activation_14 (Activation) (None, 26, 26, 64) 0 batch_normalization_14[0][0]
__________________________________________________________________________________________________
conv2d_15 (Conv2D) (None, 26, 26, 64) 36928 activation_14[0][0]
__________________________________________________________________________________________________
batch_normalization_15 (BatchNo (None, 26, 26, 64) 256 conv2d_15[0][0]
__________________________________________________________________________________________________
merge_6 (Merge) (None, 26, 26, 64) 0 batch_normalization_15[0][0]
activation_13[0][0]
__________________________________________________________________________________________________
activation_15 (Activation) (None, 26, 26, 64) 0 merge_6[0][0]
__________________________________________________________________________________________________
max_pooling2d_4 (MaxPooling2D) (None, 13, 13, 64) 0 activation_15[0][0]
__________________________________________________________________________________________________
conv2d_16 (Conv2D) (None, 11, 11, 32) 18464 max_pooling2d_4[0][0]
__________________________________________________________________________________________________
batch_normalization_16 (BatchNo (None, 11, 11, 32) 128 conv2d_16[0][0]
__________________________________________________________________________________________________
activation_16 (Activation) (None, 11, 11, 32) 0 batch_normalization_16[0][0]
__________________________________________________________________________________________________
conv2d_17 (Conv2D) (None, 11, 11, 32) 9248 activation_16[0][0]
__________________________________________________________________________________________________
batch_normalization_17 (BatchNo (None, 11, 11, 32) 128 conv2d_17[0][0]
__________________________________________________________________________________________________
activation_17 (Activation) (None, 11, 11, 32) 0 batch_normalization_17[0][0]
__________________________________________________________________________________________________
conv2d_18 (Conv2D) (None, 11, 11, 32) 9248 activation_17[0][0]
__________________________________________________________________________________________________
batch_normalization_18 (BatchNo (None, 11, 11, 32) 128 conv2d_18[0][0]
__________________________________________________________________________________________________
merge_7 (Merge) (None, 11, 11, 32) 0 batch_normalization_18[0][0]
activation_16[0][0]
__________________________________________________________________________________________________
activation_18 (Activation) (None, 11, 11, 32) 0 merge_7[0][0]
__________________________________________________________________________________________________
conv2d_19 (Conv2D) (None, 11, 11, 32) 9248 activation_18[0][0]
__________________________________________________________________________________________________
batch_normalization_19 (BatchNo (None, 11, 11, 32) 128 conv2d_19[0][0]
__________________________________________________________________________________________________
activation_19 (Activation) (None, 11, 11, 32) 0 batch_normalization_19[0][0]
__________________________________________________________________________________________________
conv2d_20 (Conv2D) (None, 11, 11, 32) 9248 activation_19[0][0]
__________________________________________________________________________________________________
batch_normalization_20 (BatchNo (None, 11, 11, 32) 128 conv2d_20[0][0]
__________________________________________________________________________________________________
merge_8 (Merge) (None, 11, 11, 32) 0 batch_normalization_20[0][0]
activation_18[0][0]
__________________________________________________________________________________________________
activation_20 (Activation) (None, 11, 11, 32) 0 merge_8[0][0]
__________________________________________________________________________________________________
max_pooling2d_5 (MaxPooling2D) (None, 5, 5, 32) 0 activation_20[0][0]
__________________________________________________________________________________________________
conv2d_21 (Conv2D) (None, 3, 3, 64) 18496 max_pooling2d_5[0][0]
__________________________________________________________________________________________________
batch_normalization_21 (BatchNo (None, 3, 3, 64) 256 conv2d_21[0][0]
__________________________________________________________________________________________________
activation_21 (Activation) (None, 3, 3, 64) 0 batch_normalization_21[0][0]
__________________________________________________________________________________________________
conv2d_22 (Conv2D) (None, 3, 3, 64) 36928 activation_21[0][0]
__________________________________________________________________________________________________
batch_normalization_22 (BatchNo (None, 3, 3, 64) 256 conv2d_22[0][0]
__________________________________________________________________________________________________
activation_22 (Activation) (None, 3, 3, 64) 0 batch_normalization_22[0][0]
__________________________________________________________________________________________________
conv2d_23 (Conv2D) (None, 3, 3, 64) 36928 activation_22[0][0]
__________________________________________________________________________________________________
batch_normalization_23 (BatchNo (None, 3, 3, 64) 256 conv2d_23[0][0]
__________________________________________________________________________________________________
merge_9 (Merge) (None, 3, 3, 64) 0 batch_normalization_23[0][0]
activation_21[0][0]
__________________________________________________________________________________________________
activation_23 (Activation) (None, 3, 3, 64) 0 merge_9[0][0]
__________________________________________________________________________________________________
conv2d_24 (Conv2D) (None, 3, 3, 64) 36928 activation_23[0][0]
__________________________________________________________________________________________________
batch_normalization_24 (BatchNo (None, 3, 3, 64) 256 conv2d_24[0][0]
__________________________________________________________________________________________________
activation_24 (Activation) (None, 3, 3, 64) 0 batch_normalization_24[0][0]
__________________________________________________________________________________________________
conv2d_25 (Conv2D) (None, 3, 3, 64) 36928 activation_24[0][0]
__________________________________________________________________________________________________
batch_normalization_25 (BatchNo (None, 3, 3, 64) 256 conv2d_25[0][0]
__________________________________________________________________________________________________
merge_10 (Merge) (None, 3, 3, 64) 0 batch_normalization_25[0][0]
activation_23[0][0]
__________________________________________________________________________________________________
activation_25 (Activation) (None, 3, 3, 64) 0 merge_10[0][0]
__________________________________________________________________________________________________
max_pooling2d_6 (MaxPooling2D) (None, 1, 1, 64) 0 activation_25[0][0]
__________________________________________________________________________________________________
flatten_1 (Flatten) (None, 64) 0 max_pooling2d_6[0][0]
__________________________________________________________________________________________________
dense_1 (Dense) (None, 256) 16640 flatten_1[0][0]
__________________________________________________________________________________________________
dropout_1 (Dropout) (None, 256) 0 dense_1[0][0]
__________________________________________________________________________________________________
dense_2 (Dense) (None, 2) 514 dropout_1[0][0]
==================================================================================================
Total params: 632,098
Trainable params: 629,538
Non-trainable params: 2,560
__________________________________________________________________________________________________
去掉模型的全连接层
from keras.models import load_model
base_model = load_model('model_resenet.h5')
resnet_model = Model(inputs=base_model.input, outputs=base_model.get_layer('max_pooling2d_6').output)
#'max_pooling2d_6'其实就是上述网络中全连接层的前面一层,当然这里你也可以选取其它层,把该层的名称代替'max_pooling2d_6'即可,这样其实就是截取网络,输出网络结构就是方便读取每层的名字。
print(resnet_model.summary())
新输出的网络结构:
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) (None, 227, 227, 1) 0
__________________________________________________________________________________________________
conv2d_1 (Conv2D) (None, 225, 225, 32) 320 input_1[0][0]
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, 225, 225, 32) 128 conv2d_1[0][0]
__________________________________________________________________________________________________
activation_1 (Activation) (None, 225, 225, 32) 0 batch_normalization_1[0][0]
__________________________________________________________________________________________________
conv2d_2 (Conv2D) (None, 225, 225, 32) 9248 activation_1[0][0]
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, 225, 225, 32) 128 conv2d_2[0][0]
__________________________________________________________________________________________________
activation_2 (Activation) (None, 225, 225, 32) 0 batch_normalization_2[0][0]
__________________________________________________________________________________________________
conv2d_3 (Conv2D) (None, 225, 225, 32) 9248 activation_2[0][0]
__________________________________________________________________________________________________
batch_normalization_3 (BatchNor (None, 225, 225, 32) 128 conv2d_3[0][0]
__________________________________________________________________________________________________
merge_1 (Merge) (None, 225, 225, 32) 0 batch_normalization_3[0][0]
activation_1[0][0]
__________________________________________________________________________________________________
activation_3 (Activation) (None, 225, 225, 32) 0 merge_1[0][0]
__________________________________________________________________________________________________
conv2d_4 (Conv2D) (None, 225, 225, 32) 9248 activation_3[0][0]
__________________________________________________________________________________________________
batch_normalization_4 (BatchNor (None, 225, 225, 32) 128 conv2d_4[0][0]
__________________________________________________________________________________________________
activation_4 (Activation) (None, 225, 225, 32) 0 batch_normalization_4[0][0]
__________________________________________________________________________________________________
conv2d_5 (Conv2D) (None, 225, 225, 32) 9248 activation_4[0][0]
__________________________________________________________________________________________________
batch_normalization_5 (BatchNor (None, 225, 225, 32) 128 conv2d_5[0][0]
__________________________________________________________________________________________________
merge_2 (Merge) (None, 225, 225, 32) 0 batch_normalization_5[0][0]
activation_3[0][0]
__________________________________________________________________________________________________
activation_5 (Activation) (None, 225, 225, 32) 0 merge_2[0][0]
__________________________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D) (None, 112, 112, 32) 0 activation_5[0][0]
__________________________________________________________________________________________________
conv2d_6 (Conv2D) (None, 110, 110, 64) 18496 max_pooling2d_1[0][0]
__________________________________________________________________________________________________
batch_normalization_6 (BatchNor (None, 110, 110, 64) 256 conv2d_6[0][0]
__________________________________________________________________________________________________
activation_6 (Activation) (None, 110, 110, 64) 0 batch_normalization_6[0][0]
__________________________________________________________________________________________________
conv2d_7 (Conv2D) (None, 110, 110, 64) 36928 activation_6[0][0]
__________________________________________________________________________________________________
batch_normalization_7 (BatchNor (None, 110, 110, 64) 256 conv2d_7[0][0]
__________________________________________________________________________________________________
activation_7 (Activation) (None, 110, 110, 64) 0 batch_normalization_7[0][0]
__________________________________________________________________________________________________
conv2d_8 (Conv2D) (None, 110, 110, 64) 36928 activation_7[0][0]
__________________________________________________________________________________________________
batch_normalization_8 (BatchNor (None, 110, 110, 64) 256 conv2d_8[0][0]
__________________________________________________________________________________________________
merge_3 (Merge) (None, 110, 110, 64) 0 batch_normalization_8[0][0]
activation_6[0][0]
__________________________________________________________________________________________________
activation_8 (Activation) (None, 110, 110, 64) 0 merge_3[0][0]
__________________________________________________________________________________________________
conv2d_9 (Conv2D) (None, 110, 110, 64) 36928 activation_8[0][0]
__________________________________________________________________________________________________
batch_normalization_9 (BatchNor (None, 110, 110, 64) 256 conv2d_9[0][0]
__________________________________________________________________________________________________
activation_9 (Activation) (None, 110, 110, 64) 0 batch_normalization_9[0][0]
__________________________________________________________________________________________________
conv2d_10 (Conv2D) (None, 110, 110, 64) 36928 activation_9[0][0]
__________________________________________________________________________________________________
batch_normalization_10 (BatchNo (None, 110, 110, 64) 256 conv2d_10[0][0]
__________________________________________________________________________________________________
merge_4 (Merge) (None, 110, 110, 64) 0 batch_normalization_10[0][0]
activation_8[0][0]
__________________________________________________________________________________________________
activation_10 (Activation) (None, 110, 110, 64) 0 merge_4[0][0]
__________________________________________________________________________________________________
max_pooling2d_2 (MaxPooling2D) (None, 55, 55, 64) 0 activation_10[0][0]
__________________________________________________________________________________________________
conv2d_11 (Conv2D) (None, 53, 53, 64) 36928 max_pooling2d_2[0][0]
__________________________________________________________________________________________________
batch_normalization_11 (BatchNo (None, 53, 53, 64) 256 conv2d_11[0][0]
__________________________________________________________________________________________________
activation_11 (Activation) (None, 53, 53, 64) 0 batch_normalization_11[0][0]
__________________________________________________________________________________________________
max_pooling2d_3 (MaxPooling2D) (None, 26, 26, 64) 0 activation_11[0][0]
__________________________________________________________________________________________________
conv2d_12 (Conv2D) (None, 26, 26, 64) 36928 max_pooling2d_3[0][0]
__________________________________________________________________________________________________
batch_normalization_12 (BatchNo (None, 26, 26, 64) 256 conv2d_12[0][0]
__________________________________________________________________________________________________
activation_12 (Activation) (None, 26, 26, 64) 0 batch_normalization_12[0][0]
__________________________________________________________________________________________________
conv2d_13 (Conv2D) (None, 26, 26, 64) 36928 activation_12[0][0]
__________________________________________________________________________________________________
batch_normalization_13 (BatchNo (None, 26, 26, 64) 256 conv2d_13[0][0]
__________________________________________________________________________________________________
merge_5 (Merge) (None, 26, 26, 64) 0 batch_normalization_13[0][0]
max_pooling2d_3[0][0]
__________________________________________________________________________________________________
activation_13 (Activation) (None, 26, 26, 64) 0 merge_5[0][0]
__________________________________________________________________________________________________
conv2d_14 (Conv2D) (None, 26, 26, 64) 36928 activation_13[0][0]
__________________________________________________________________________________________________
batch_normalization_14 (BatchNo (None, 26, 26, 64) 256 conv2d_14[0][0]
__________________________________________________________________________________________________
activation_14 (Activation) (None, 26, 26, 64) 0 batch_normalization_14[0][0]
__________________________________________________________________________________________________
conv2d_15 (Conv2D) (None, 26, 26, 64) 36928 activation_14[0][0]
__________________________________________________________________________________________________
batch_normalization_15 (BatchNo (None, 26, 26, 64) 256 conv2d_15[0][0]
__________________________________________________________________________________________________
merge_6 (Merge) (None, 26, 26, 64) 0 batch_normalization_15[0][0]
activation_13[0][0]
__________________________________________________________________________________________________
activation_15 (Activation) (None, 26, 26, 64) 0 merge_6[0][0]
__________________________________________________________________________________________________
max_pooling2d_4 (MaxPooling2D) (None, 13, 13, 64) 0 activation_15[0][0]
__________________________________________________________________________________________________
conv2d_16 (Conv2D) (None, 11, 11, 32) 18464 max_pooling2d_4[0][0]
__________________________________________________________________________________________________
batch_normalization_16 (BatchNo (None, 11, 11, 32) 128 conv2d_16[0][0]
__________________________________________________________________________________________________
activation_16 (Activation) (None, 11, 11, 32) 0 batch_normalization_16[0][0]
__________________________________________________________________________________________________
conv2d_17 (Conv2D) (None, 11, 11, 32) 9248 activation_16[0][0]
__________________________________________________________________________________________________
batch_normalization_17 (BatchNo (None, 11, 11, 32) 128 conv2d_17[0][0]
__________________________________________________________________________________________________
activation_17 (Activation) (None, 11, 11, 32) 0 batch_normalization_17[0][0]
__________________________________________________________________________________________________
conv2d_18 (Conv2D) (None, 11, 11, 32) 9248 activation_17[0][0]
__________________________________________________________________________________________________
batch_normalization_18 (BatchNo (None, 11, 11, 32) 128 conv2d_18[0][0]
__________________________________________________________________________________________________
merge_7 (Merge) (None, 11, 11, 32) 0 batch_normalization_18[0][0]
activation_16[0][0]
__________________________________________________________________________________________________
activation_18 (Activation) (None, 11, 11, 32) 0 merge_7[0][0]
__________________________________________________________________________________________________
conv2d_19 (Conv2D) (None, 11, 11, 32) 9248 activation_18[0][0]
__________________________________________________________________________________________________
batch_normalization_19 (BatchNo (None, 11, 11, 32) 128 conv2d_19[0][0]
__________________________________________________________________________________________________
activation_19 (Activation) (None, 11, 11, 32) 0 batch_normalization_19[0][0]
__________________________________________________________________________________________________
conv2d_20 (Conv2D) (None, 11, 11, 32) 9248 activation_19[0][0]
__________________________________________________________________________________________________
batch_normalization_20 (BatchNo (None, 11, 11, 32) 128 conv2d_20[0][0]
__________________________________________________________________________________________________
merge_8 (Merge) (None, 11, 11, 32) 0 batch_normalization_20[0][0]
activation_18[0][0]
__________________________________________________________________________________________________
activation_20 (Activation) (None, 11, 11, 32) 0 merge_8[0][0]
__________________________________________________________________________________________________
max_pooling2d_5 (MaxPooling2D) (None, 5, 5, 32) 0 activation_20[0][0]
__________________________________________________________________________________________________
conv2d_21 (Conv2D) (None, 3, 3, 64) 18496 max_pooling2d_5[0][0]
__________________________________________________________________________________________________
batch_normalization_21 (BatchNo (None, 3, 3, 64) 256 conv2d_21[0][0]
__________________________________________________________________________________________________
activation_21 (Activation) (None, 3, 3, 64) 0 batch_normalization_21[0][0]
__________________________________________________________________________________________________
conv2d_22 (Conv2D) (None, 3, 3, 64) 36928 activation_21[0][0]
__________________________________________________________________________________________________
batch_normalization_22 (BatchNo (None, 3, 3, 64) 256 conv2d_22[0][0]
__________________________________________________________________________________________________
activation_22 (Activation) (None, 3, 3, 64) 0 batch_normalization_22[0][0]
__________________________________________________________________________________________________
conv2d_23 (Conv2D) (None, 3, 3, 64) 36928 activation_22[0][0]
__________________________________________________________________________________________________
batch_normalization_23 (BatchNo (None, 3, 3, 64) 256 conv2d_23[0][0]
__________________________________________________________________________________________________
merge_9 (Merge) (None, 3, 3, 64) 0 batch_normalization_23[0][0]
activation_21[0][0]
__________________________________________________________________________________________________
activation_23 (Activation) (None, 3, 3, 64) 0 merge_9[0][0]
__________________________________________________________________________________________________
conv2d_24 (Conv2D) (None, 3, 3, 64) 36928 activation_23[0][0]
__________________________________________________________________________________________________
batch_normalization_24 (BatchNo (None, 3, 3, 64) 256 conv2d_24[0][0]
__________________________________________________________________________________________________
activation_24 (Activation) (None, 3, 3, 64) 0 batch_normalization_24[0][0]
__________________________________________________________________________________________________
conv2d_25 (Conv2D) (None, 3, 3, 64) 36928 activation_24[0][0]
__________________________________________________________________________________________________
batch_normalization_25 (BatchNo (None, 3, 3, 64) 256 conv2d_25[0][0]
__________________________________________________________________________________________________
merge_10 (Merge) (None, 3, 3, 64) 0 batch_normalization_25[0][0]
activation_23[0][0]
__________________________________________________________________________________________________
activation_25 (Activation) (None, 3, 3, 64) 0 merge_10[0][0]
__________________________________________________________________________________________________
max_pooling2d_6 (MaxPooling2D) (None, 1, 1, 64) 0 activation_25[0][0]
==================================================================================================
Total params: 614,944
Trainable params: 612,384
Non-trainable params: 2,560
__________________________________________________________________________________________________
来源:https://blog.csdn.net/qq_29462849/article/details/83010854


猜你喜欢
- 1 数据离散化1.1 为什么要离散化连续属性离散化的目的是为了简化数据结构,数据离散化技术可以用来减少给定连续属性值的个数。离散化方法经常作
- 成果库修改: 要求主题列表随成果类型改变而改变  
- 由于这个数据库服务器存放的数据库比较多且都是小数据库,所以最初的时候是运行在windows服务器上的。前一段时间由于机房服务器要做调整,于是
- 如何使用mailto?1)基本用法<a href=mailto:sample@163.com>send em
- 概述从前面的对Python基础知识方法介绍中,我们几乎是围绕Python内置方法进行探索实践,比如字符串、列表、字典等数据结构的内置方法,和
- Git 创建仓库本章节我们将为大家介绍如何创建一个 Git 仓库。你可以使用一个已经存在的目录作为Git仓库。git initGit 使用
- 昨天在网上看到一个防采集软件,说采集只访问当前网页,不会访问网页的图片、JS等,今天突然想到,通过动态程序和Js访问分别记录访问者的IP,然
- 前段时间为准备百度面试恶补的东西,虽然最后还是被刷了,还是把那几天的“战利品”放点上来,算法一直是自己比较薄弱的地方,以后还要更加努力啊。下
- 桑基图桑基图(Sankey diagram),即桑基能量分流图,也叫桑基能量平衡图。它是一种特定类型的流程图,图中延伸的分支的宽度对应数据流
- operator模块是python中内置的操作符函数接口,它定义了一些算术和比较内置操作的函数。operator模块是用c实现的,所以执行速
- 本文实例讲述了Python实现简单的代理服务器。分享给大家供大家参考。具体如下:具备简单的管理功能,运行后 telnet localhost
- 前言本文的github仓库地址为: 替换照片人物背景项目(模型文件过大,不在仓库中)由于模型文件过大,没放在仓库中,本文下面有模型下载地址。
- 1 Pytorch以ONNX方式保存模型 def saveONNX(model, filepath): ''
- 最近在pythonTip做题的时候,遇到了deque模块,以前对其不太了解,现在特此总结一下deque模块是python标准库collect
- 同由其他技术驱动的应用一样,在相同的Web服务器上运行Django应用也是可行的。 最简单直接的办法就是利用Apaches配置文件httpd
- 今天是 Firefox3的2008下载日 ,这就意味着Firefox3正式发布了。Firefox3有众多的改进和新功能,我最关注的功能之一是
- 现状≠将来?程序员做设计本身就很悲哀,纠结于客户与坚持之间就更是如此。无论我今后的路会怎么走,我想始终不变的事情就是与客户博弈了。无论是放弃
- 我就废话不多说了,大家还是直接看代码吧~b = torch.zeros((3, 2, 6, 6))a = torch.zeros((3, 2
- 前言推导式提供了更简洁高效的方法来生成序列而又不失代码的可读性。定义: 推导式是 Python 里很有用的一个特性,它可以用一行代码就可以创
- 端口扫描是非常实用的,不止用在信息安全方面,日常的运维也用得到。这方面的工具也不要太多,搞过 CTF 的朋友会告诉你有多少端口扫描工具,那为