网络编程
位置:首页>> 网络编程>> Python编程>> 详解Python 关联规则分析

详解Python 关联规则分析

作者:阿橙FM  发布时间:2023-09-03 11:54:18 

标签:python,关联规则,分析
目录
  • 1. 关联规则

    • 1.1 基本概念

    • 1.2 关联规则Apriori算法

  • 2. mlxtend实战关联规则

    • 2.1 安装

    • 2.2 简单的例子

  • 3. 总结

    1. 关联规则

    大家可能听说过用于宣传数据挖掘的一个案例:啤酒和尿布;据说是沃尔玛超市在分析顾客的购买记录时,发现许多客户购买啤酒的同时也会购买婴儿尿布,于是超市调整了啤酒和尿布的货架摆放,让这两个品类摆放在一起;结果这两个品类的销量都有明显的增长;分析原因是很多刚生小孩的男士在购买的啤酒时,会顺手带一些婴幼儿用品。

    不论这个案例是否是真实的,案例中分析顾客购买记录的方式就是关联规则分析法Association Rules。

    关联规则分析也被称为购物篮分析,用于分析数据集各项之间的关联关系。

    1.1 基本概念

    • 项集:item的集合,如集合{牛奶、麦片、糖}是一个3项集,可以认为是购买记录里物品的集合。

    • 频繁项集:顾名思义就是频繁出现的item项的集合。如何定义频繁呢?用比例来判定,关联规则中采用支持度和置信度两个概念来计算比例值

    • 支持度:共同出现的项在整体项中的比例。以购买记录为例子,购买记录100条,如果商品A和B同时出现50条购买记录(即同时购买A和B的记录有50),那边A和B这个2项集的支持度为50%

    详解Python 关联规则分析

    • 置信度:购买A后再购买B的条件概率,根据贝叶斯公式,可如下表示:

    详解Python 关联规则分析

    提升度:为了判断产生规则的实际价值,即使用规则后商品出现的次数是否高于商品单独出现的评率,提升度和衡量购买X对购买Y的概率的提升作用。如下公式可见,如果X和Y相互独立那么提升度为1,提升度越大,说明X->Y的关联性越强

    详解Python 关联规则分析

    1.2 关联规则Apriori算法

    关联规则方法的步骤如下:

    • 发现频繁项集

    • 找出关联规则

    Apriori算法是经典的关联规则算法。Apriori算法的目标是找到最大的K项频繁集。Apriori算法从寻找1项集开始,通过最小支持度阈值进行剪枝,依次寻找2项集,3项集直到没有更过项集为止。

    下面是一个案例图解:

    详解Python 关联规则分析

    • 图中有4个记录,记录项有1,2,3,4,5若干

    • 首先先找出1项集对应的支持度(C1),可以看出4的支持度低于最小支持阈值,先剪掉(L1)。

    • 从1项集生成2项集,并计算支持度(C2),可以看出(1,5)(1,2)支持度低于最小支持阈值,先剪掉(L2)

    • 从2项集生成3项集,(1,2,3)(1,2,5)(2,3,5)只有(2,3,5)满足要求

    • 没有更多的项集了,就定制迭代

    2. mlxtend实战关联规则

    关联规则目前在scikit-learn中并没有实现。这里介绍另一个python库mlxtend。

    2.1 安装


    pip install mlxtend

    2.2 简单的例子

    来看下数据集:


    import pandas as pd

    item_list = [['牛奶','面包'],
        ['面包','尿布','啤酒','土豆'],
        ['牛奶','尿布','啤酒','可乐'],
        ['面包','牛奶','尿布','啤酒'],
        ['面包','牛奶','尿布','可乐']]

    item_df = pd.DataFrame(item_list)

    数据格式处理,传入模型的数据需要满足bool值的格式


    from mlxtend.preprocessing import TransactionEncode

    te = TransactionEncoder()
    df_tf = te.fit_transform(item_list)
    df = pd.DataFrame(df_tf,columns=te.columns_)

    详解Python 关联规则分析

    • 计算频繁项集


    from mlxtend.frequent_patterns import apriori

    # use_colnames=True表示使用元素名字,默认的False使用列名代表元素, 设置最小支持度min_support
    frequent_itemsets = apriori(df, min_support=0.05, use_colnames=True)

    frequent_itemsets.sort_values(by='support', ascending=False, inplace=True)

    # 选择2频繁项集
    print(frequent_itemsets[frequent_itemsets.itemsets.apply(lambda x: len(x)) == 2])  

    详解Python 关联规则分析

    • 计算关联规则


    from mlxtend.frequent_patterns import association_rules

    # metric可以有很多的度量选项,返回的表列名都可以作为参数
    association_rule = association_rules(frequent_itemsets,metric='confidence',min_threshold=0.9)

    #关联规则可以提升度排序
    association_rule.sort_values(by='lift',ascending=False,inplace=True)    
    association_rule
    # 规则是:antecedents->consequents

    详解Python 关联规则分析

    选择出来关联规则之后,根据提升度排序后,可能最高提升度的规则是在我们常识范围内,那这个规则的价值就不高。所以我们要在产生的规则中根据业务特点进行筛选,像开篇提到(啤酒->尿布)完全不同的品类之间的关联。

    笔者最近用关联规则分析用户的体检报告记录,也得出了关于各个病症的有意义的关联,如并发症,不同病症相互影响等。

    3. 总结

    本分介绍关联规则的基本概念和经典算法Apriori,以及python的实现库mlxtend使用。

    总结如下:

    • 关联规则用于分析数据集各项之间的关联关系,想一想啤酒和尿布的故事

    • 三个重要概念:支持度,置信度和提升度

    • Apriori通过迭代先找1项集,用支持度过滤项集,逐步找出所有k项集

    • 用置信度或提升度来选择满足的要求的规则

    • mlxtend对数据要求转换成bool值才可用

    来源:https://juejin.cn/post/6940506066513821703

    0
    投稿

    猜你喜欢

    • sql server 全文检索有两种搜索方式,一种是contains,另一种是freetext。前者是包含,类似于 like '%关
    • 首先说一下需求,我需要将数据以分钟为单位进行分组,然后每一分钟内的数据作为一行输出,因为不同时间的数据量不一样,所以所有数据按照最长的那组数
    • 本文实例讲述了flask框架单元测试原理与用法。分享给大家供大家参考,具体如下:为什么要测试?Web程序开发过程一般包括以下几个阶段:[需求
    • 前言mysql 相信大部分人都用过,索引肯定也是用过的,但是你知道如何创建恰当的索引吗?在数据量小的时候,不合适的索引对性能并不会有太大的影
    • def Dijkstra(network,s,d):#迪杰斯特拉算法算s-d的最短路径,并返回该路径和代价  print(&quo
    • 关于 PHP 的文件操作,我们也将是通过一系列的文章来进行学习。今天我们先学习的是一个很少人使用过,甚至很多人根本不知道的扩展,它与我们日常
    • 本文实例讲述了Python递归遍历列表及输出的实现方法。分享给大家供大家参考。具体实现方法如下:def dp(s):  if is
    •    在SQL Server 中每个变量、参数、表达式等都有数据类型。系统提供的数据类型分为几大类,如表4-2 所示。&
    • 本文实例讲述了python版本的读写锁操作方法。分享给大家供大家参考,具体如下:最近要用到读写锁的机制,但是python2.7的自带库里居然
    • 更轻量- 出色的颗粒化模块,子模块划分;- 延迟加载;- 强调代码重用(公共基类、插件、扩展);更易用- 统一的API;- 便利(each,
    • #最近在网上看代码时,出现了@???的代码,看了好久也不知道是什么意思,经过了解原来是装饰器,我给大家举个例子讲解一下,帮助大家快速理解:#
    • 有的时候,我们在网页中会用到复选框,也就是多选框,当用户提交输入信息的时候我们会获取复选框的内容,然后保存到数据库中,如经常用到的是用户输入
    • 本文实例讲述了PHP+Mysql基于事务处理实现转账功能的方法。分享给大家供大家参考。具体如下:<?php  header(
    • 大部分面向对象的编程语言(除了C++)都只支持单继承,而不支持多继承,为什么呢?因为多继承不仅增加编程复杂度,而且容易导致莫名其妙的错误。P
    • 下面直接记录下配置主从库的操作:(本文用的是mysql5.0以上)1.在主库建立要同步的数据库,建立主库的帐号和修改主库配置首先连接上数据库
    • 一、节点的定义dom节点树图中可见节点HTML文档中的每个成分都是一个节点:整个文档是一个文档节点每个HTML标签是一个元素节点包含在HTM
    • PDO::errorCodePDO::errorCode — 获取跟数据库句柄上一次操作相关的 SQLSTATE(PHP 5 >= 5
    • 对会读书的人来说,读一本书要做的第一件事,就是仔细阅读这本书的目录。阅读目录可以对整体内容有所了解,并清楚地知道感兴趣的部分在哪里,提高阅读
    • 功能: 1、 允许/限制对表的修改 2、 自动生成派生列,比如自增字段 3、 强制数据一致性 4、 提供审计和日志记录 5、 防止无效的事务
    • 推箱子游戏是老游戏了, 网上有各种各样的版本, 说下推箱子游戏的简单实现,以及我找到的一些参考视频和实例;如下是效果图:这个拖箱子游戏做了移
    手机版 网络编程 asp之家 www.aspxhome.com