基于python爬虫数据处理(详解)
作者:jingxian 发布时间:2023-06-07 11:38:39
一、首先理解下面几个函数
设置变量 length()函数 char_length() replace() 函数 max() 函数
1.1、设置变量 set @变量名=值
set @address='中国-山东省-聊城市-莘县';
select @address
1.2 、length()函数 char_length()函数区别
select length('a')
,char_length('a')
,length('中')
,char_length('中')
1.3、 replace() 函数 和length()函数组合
set @address='中国-山东省-聊城市-莘县';
select @address
,replace(@address,'-','') as address_1
,length(@address) as len_add1
,length(replace(@address,'-','')) as len_add2
,length(@address)-length(replace(@address,'-','')) as _count
etl清洗字段时候有明显分割符的如何确定新的数据表增加几个分割出的字段
计算出com_industry中最多有几个 - 符 以便确定增加几个字段 最大值+1 为可以拆分成的字段数 此表为3 因此可以拆分出4个行业字段 也就是4个行业等级
select max(length(com_industry)-length(replace(com_industry,'-',''))) as _max_count
from etl1_socom_data
1.4、设置变量 substring_index()字符串截取函数用法
set @address='中国-山东省-聊城市-莘县';
select
substring_index(@address,'-',1) as china,
substring_index(substring_index(@address,'-',2),'-',-1) as province,
substring_index(substring_index(@address,'-',3),'-',-1) as city,
substring_index(@address,'-',-1) as district
1.5、条件判断函数 case when
case when then when then else 值 end as 字段名
select case when 89>101 then '大于' else '小于' end as betl1_socom_data
二、kettle转换etl1清洗
首先建表 步骤在视频里
字段索引 没有提 索引算法建议用BTREE算法增强查询效率
2.1.kettle文件名:trans_etl1_socom_data
2.2.包括控件:表输入>>>表输出
2.3.数据流方向:s_socom_data>>>>etl1_socom_data
kettle转换1截图
2.4、表输入2.4、SQL脚本 初步清洗com_district和com_industry字段
select a.*,
case when com_district like '%业' or com_district like '%织' or com_district like '%育' then null else com_district end as com_district1
,case when com_district like '%业' or com_district like '%织' or com_district like '%育' then concat(com_district,'-',com_industry) else com_industry end as com_industry_total
,replace(com_addr,'地 址:','') as com_addr1
,replace(com_phone,'电 话:','') as com_phone1
,replace(com_fax,'传 真:','') as com_fax1
,replace(com_mobile,'手机:','') as com_mobile1
,replace(com_url,'网址:','') as com_url1
,replace(com_email,'邮箱:','') as com_email1
,replace(com_contactor,'联系人:','') as com_contactor1
,replace(com_emploies_nums,'公司人数:','') as com_emploies_nums1
,replace(com_reg_capital,'注册资金:万','') as com_reg_capital1
,replace(com_type,'经济类型:','') as com_type1
,replace(com_product,'公司产品:','') as com_product1
,replace(com_desc,'公司简介:','') as com_desc1
from s_socom_data as a
2.5、表输出
表输出设置注意事项
注意事项:
① 涉及爬虫增量操作 不要勾选裁剪表选项
②数据连接问题 选择表输出中表所在的数据库
③字段映射问题 确保数据流中的字段和物理表的字段数量一致 对应一致
三、kettle转换etl2清洗
首先建表增加了4个字段 演示步骤在视频里
字段索引 没有提 索引算法建议用BTREE算法增强查询效率
主要针对etl1 生成的新的com_industry进行字段拆分 清洗
3.1.kettle文件名:trans_etl2_socom_data
3.2.包括控件:表输入>>>表输出
3.3.数据流方向:etl1_socom_data>>>>etl2_socom_data
注意事项:
① 涉及爬虫增量操作 不要勾选裁剪表选项
②数据连接问题 选择表输出中表所在的数据库
③字段映射问题 确保数据流中的字段和物理表的字段数量一致 对应一致
kettle转换2截图
3.4、SQL脚本 对com_industry进行拆分 完成所有字段清洗 注册资金字段时间关系没有进行细致拆解 调整代码即可
select a.*,
case
#行业为''的值 置为空
when length(com_industry)=0 then null
#其他的取第一个-分隔符之前
else substring_index(com_industry,'-',1) end as com_industry1,
case
when length(com_industry)-length(replace(com_industry,'-',''))=0 then null
#'交通运输、仓储和邮政业-' 这种值 行业2 也置为null
when length(com_industry)-length(replace(com_industry,'-',''))=1 and length(substring_index(com_industry,'-',-1))=0 then null
when length(com_industry)-length(replace(com_industry,'-',''))=1 then substring_index(com_industry,'-',-1)
else substring_index(substring_index(com_industry,'-',2),'-',-1)
end as com_industry2,
case
when length(com_industry)-length(replace(com_industry,'-',''))<=1 then null
when length(com_industry)-length(replace(com_industry,'-',''))=2 then substring_index(com_industry,'-',-1)
else substring_index(substring_index(com_industry,'-',3),'-',-1)
end as com_industry3,
case
when length(com_industry)-length(replace(com_industry,'-',''))<=2 then null
else substring_index(com_industry,'-',-1)
end as com_industry4
from etl1_socom_data as a
四、清洗效果质量检查
4.1爬虫数据源数据和网站数据是否相符
如果本身工作是爬虫和数据处理在一起处理,抓取的时候其实已经判断,此步骤可以省略,如果对接上游爬虫同事,这一步首先判断,不然清洗也是无用功,一般都要求爬虫同事存储请求的url便于后面数据处理查看数据质量
4.2计算爬虫数据源和各etl清洗数据表数据量
注:SQL脚本中没有经过聚合过滤 3个表数据量应相等
4.2.1、sql查询 下面表我是在同一数据库中 如果不在同一数据库 from 后面应加上表所在的数据库名称
不推荐数据量大的时候使用
select count(1) from s_socom_data
union all
select count(1) from etl1_socom_data
union all
select count(1) from etl2_socom_data
4.2.2 根据 kettle转换执行完毕以后 表输出总量对比
kettle表输出总数据量
4.3查看etl清洗质量
确保前两个步骤已经无误,数据处理负责的etl清洗工作自查开始 针对数据源清洗的字段 写脚本检查 socom网站主要是对地区 和行业进行了清洗 对其他字段做了替换多余字段处理 ,因此采取脚本检查,
找到page_url和网站数据进行核查
where里面这样写便于查看某个字段的清洗情况
select *
from etl2_socom_data
where com_district is null and length(com_industry)-length(replace(com_industry,'-',''))=3
http://www.socom.cn/company/7320798.html此页面数据和etl2_socom_data表最终清洗数据对比
网站页面数据
etl2_socom_data表数据
清洗工作完成。


猜你喜欢
- 以下的文章主要介绍的是MySQL 查询缓存的实际应用代码以及查看MySQL 查询缓存的大小 ,碎片整理,清除缓存以及监视MySQL 查询缓存
- 工厂方法(Factory Method)模式又称为虚拟构造器(Virtual Constructor)模式或者多态工厂(Polymorphi
- 我就废话不多说了,直接上代码吧!【code】import numpy as npthreshold=2a=np.array([[1,2,3]
- AlexNet是2012年ImageNet比赛的冠军,虽然过去了很长时间,但是作为深度学习中的经典模型,AlexNet不但有助于我们理解其中
- 一、Map是什么?map是一堆键值对的未排序集合,类似Python中字典的概念,它的格式为map[keyType]valueType,是一个
- python中random.sample()方法可以随机地从指定列表中提取出N个不同的元素,但在实践中发现,当N的值比较大的时候,该方法执行
- 绘制一个菱形四边形,边长为 200 像素。方法1和2绘制了内角为60和120度的菱形,方法3绘制了内角为90度的菱形。方法1
- 水平线对于制作网页的朋友来说一定不会陌生,它在网页的版式设计中是非常有作用的,可以用来分隔文本和对象。
- 如果可以减少过多的外部隔离的API和简化部署的细节 这会是非常好的。在以前的文章中,我解释了"一些使用反向代理的好处&
- 来由:最近的工作一直是学校设计教程的开发,都是自己根据理论知识加一些实际工作经验相结合写的教程,所以不会咬文嚼字,文笔也不一定非常专业和流畅
- 本文实例讲述了Python实现获取nginx服务器ip及流量统计信息功能。分享给大家供大家参考,具体如下:#!/usr/bin/python
- 如下所示:希望可以从对admin提交的密码加密,并验证电话号码均为数字。查看admin.pyfrom django.contrib impo
- 一·算术运算符在python中,算术运算符与数学中的算术运算极为类似,只是有些运算符号有所差别。算术运算符的算术计算一
- 通常懒加载等都会通过监听scroll事件用getBoundingClientRect()来判断元素位置来决定是否可以开始加载。性能开销是比较
- 光学元件类平面反射镜是一种极为简单的模型,因为我们只需要考虑一个平面即可。但是除此之外的其他光学元件,可能会变得有些复杂:我们必须考虑光在入
- 比如我们有一张school表,里面有一个字段county_name,现在我们要查询county_name字段中包含a-w字母和数字以外字符的
- 一、什么是幻读在一次事务里面,多次查询之后,结果集的个数不一致的情况叫做幻读。而多出来或者少的哪一行被叫做 幻行二、为什么要解决幻读在高并发
- 守护进程(daemon)是指在UNIX或其他多任务操作系统中在后台执行的电脑程序,并不会接受电脑用户的直接操控。此类程序会被以进程的形式初始
- 项目场景:使用Anaconda Prompt创建虚拟环境问题描述保存虚拟环境的默认地址是C盘,而我想将下载的虚拟环境保存到我自定义的位置。解
- 面部识别----考勤打卡、注册登录、面部支付等等...感觉很高大上,又很方便,下面用python中的框架--django完成一个注册登录的功