Python可视化库之HoloViews的使用教程
作者:Python学习与数据挖掘 发布时间:2023-11-05 17:09:03
标签:Python,可视化,HoloViews
最近一直在整理统计图表的绘制方法,发现Python中除了经典Seaborn库外,还有一些优秀的可交互的第三方库也能实现一些常见的统计图表绘制,而且其还拥有Matplotlib、Seaborn等库所不具备的交互效果。
当然,同时也能绘制出版级别的图表要求,此外,一些在使用Matplotlib需自定义函数才能绘制的图表在一些第三方库中都集成了,这也大大缩短了绘图时间。
今天我就详细介绍一个优秀的第三方库-HoloViews,内容主要如下:
Python-HoloViews库介绍
Python-HoloViews库样例介绍
Python-HoloViews库介绍
Python-HoloViews库作为一个开源的可视化库,其目的是使数据分析结果和可视化完美衔接,其默认的绘图主题和配色以及较少的绘图代码量,可以使你专注于数据分析本身,同时其统计绘图功能也非常优秀。更多关于HoloViews库的介绍,可参考:Python-HoloViews库官网[1]
Python-HoloViews库样例介绍
这一部分小编重点放在一些统计图表上,其绘制结果不仅可以在网页上交互,同时其默认的绘图结果也完全满足出版界别的要求,主要内容如下(以下图表都是可交互的):
密度图+箱线图
import pandas as pd
import holoviews as hv
from bokeh.sampledata import autompg
hv.extension('bokeh')
df = autompg.autompg_clean
bw = hv.BoxWhisker(df, kdims=["origin"], vdims=["mpg"])
dist = hv.NdOverlay(
{origin: hv.Distribution(group, kdims=["mpg"])
for origin, group in df.groupby("origin")}
)
bw + dist
密度图+箱线图
散点图+横线图
scatter = hv.Scatter(df, kdims=["origin"], vdims=["mpg"]).opts(jitter=0.3)
yticks = [(i + 0.25, origin) for i, origin in enumerate(df["origin"].unique())]
spikes = hv.NdOverlay(
{
origin: hv.Spikes(group["mpg"]).opts(position=i)
for i, (origin, group) in enumerate(df.groupby("origin", sort=False))
}
).opts(hv.opts.Spikes(spike_length=0.5, yticks=yticks, show_legend=False, alpha=0.3))
scatter + spikes
散点图+横线图
Iris Splom
from bokeh.sampledata.iris import flowers
from holoviews.operation import gridmatrix
ds = hv.Dataset(flowers)
grouped_by_species = ds.groupby('species', container_type=hv.NdOverlay)
grid = gridmatrix(grouped_by_species, diagonal_type=hv.Scatter)
grid.opts(opts.Scatter(tools=['hover', 'box_select'], bgcolor='#efe8e2', fill_alpha=0.2, size=4))
Iris Splom
面积图
# create some example data
python=np.array([2, 3, 7, 5, 26, 221, 44, 233, 254, 265, 266, 267, 120, 111])
pypy=np.array([12, 33, 47, 15, 126, 121, 144, 233, 254, 225, 226, 267, 110, 130])
jython=np.array([22, 43, 10, 25, 26, 101, 114, 203, 194, 215, 201, 227, 139, 160])
dims = dict(kdims='time', vdims='memory')
python = hv.Area(python, label='python', **dims)
pypy = hv.Area(pypy, label='pypy', **dims)
jython = hv.Area(jython, label='jython', **dims)
opts.defaults(opts.Area(fill_alpha=0.5))
overlay = (python * pypy * jython)
overlay.relabel("Area Chart") + hv.Area.stack(overlay).relabel("Stacked Area Chart")
面积图
直方图系列
def get_overlay(hist, x, pdf, cdf, label):
pdf = hv.Curve((x, pdf), label='PDF')
cdf = hv.Curve((x, cdf), label='CDF')
return (hv.Histogram(hist, vdims='P(r)') * pdf * cdf).relabel(label)
np.seterr(divide='ignore', invalid='ignore')
label = "Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.normal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(-2, 2, 1000)
pdf = 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-(x-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((x-mu)/np.sqrt(2*sigma**2)))/2
norm = get_overlay(hist, x, pdf, cdf, label)
label = "Log Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.lognormal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8.0, 1000)
pdf = 1/(x* sigma * np.sqrt(2*np.pi)) * np.exp(-(np.log(x)-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((np.log(x)-mu)/(np.sqrt(2)*sigma)))/2
lognorm = get_overlay(hist, x, pdf, cdf, label)
label = "Gamma Distribution (k=1, θ=2)"
k, theta = 1.0, 2.0
measured = np.random.gamma(k, theta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 20.0, 1000)
pdf = x**(k-1) * np.exp(-x/theta) / (theta**k * scipy.special.gamma(k))
cdf = scipy.special.gammainc(k, x/theta) / scipy.special.gamma(k)
gamma = get_overlay(hist, x, pdf, cdf, label)
label = "Beta Distribution (α=2, β=2)"
alpha, beta = 2.0, 2.0
measured = np.random.beta(alpha, beta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 1, 1000)
pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
cdf = scipy.special.btdtr(alpha, beta, x)
beta = get_overlay(hist, x, pdf, cdf, label)
label = "Weibull Distribution (λ=1, k=1.25)"
lam, k = 1, 1.25
measured = lam*(-np.log(np.random.uniform(0, 1, 1000)))**(1/k)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8, 1000)
pdf = (k/lam)*(x/lam)**(k-1) * np.exp(-(x/lam)**k)
cdf = 1 - np.exp(-(x/lam)**k)
weibull = get_overlay(hist, x, pdf, cdf, label)
直方图系列
Route Chord
import holoviews as hv
from holoviews import opts, dim
from bokeh.sampledata.airport_routes import routes, airports
hv.extension('bokeh')
# Count the routes between Airports
route_counts = routes.groupby(['SourceID', 'DestinationID']).Stops.count().reset_index()
nodes = hv.Dataset(airports, 'AirportID', 'City')
chord = hv.Chord((route_counts, nodes), ['SourceID', 'DestinationID'], ['Stops'])
# Select the 20 busiest airports
busiest = list(routes.groupby('SourceID').count().sort_values('Stops').iloc[-20:].index.values)
busiest_airports = chord.select(AirportID=busiest, selection_mode='nodes')
busiest_airports.opts(
opts.Chord(cmap='Category20', edge_color=dim('SourceID').str(),
height=800, labels='City', node_color=dim('AirportID').str(), width=800))
Route Chord
小提琴图
import holoviews as hv
from holoviews import dim
from bokeh.sampledata.autompg import autompg
hv.extension('bokeh')
violin = hv.Violin(autompg, ('yr', 'Year'), ('mpg', 'Miles per Gallon')).redim.range(mpg=(8, 45))
violin.opts(height=500, width=900, violin_fill_color=dim('Year').str(), cmap='Set1')
小提琴图
更多样例可查看:Python-HoloViews样例[2]
来源:https://blog.csdn.net/weixin_38037405/article/details/123060349


猜你喜欢
- 实例如下:<?php/*分治法——直接选择比如说a b c首先将a之后的字符依次与a进行交换1 b,a,c2 c,b,a注意这里少了一
- 阅读作者的上一篇相关文章:段正淳的css笔记(3)标题右侧“更多”的实现 段正淳的css笔记(4)1、css代码的简写css缩写的语法,对新
- 本文实例为大家分享了python3 pillow模块验证码的具体代码,供大家参考,具体内容如下直接放代码吧,该写的注释基本都写了# -*-
- 前言:日常工作中,会遇到一些加密的zip文件,但是因为某些原因或者时间过长,密码不知道了。但是zip文件中文件有很重要很必须。那么,我们试一
- 在前面文章中,有提到过 mysqldump 备份文件中记录的时间戳数据都是以 UTC 时区为基础的,在筛选恢复单库或单表时要注意时区差别。后
- 大家平时见到google的广告太多了,但有没有兴趣知道一下它的运行过程呢?下面我们一起来看看这个广告代码的执行过程,以及其中的一些精彩内容。
- Python学习第一篇。把之前学习的Python基础知识总结一下。一、认识Python首先我们得清楚这个:Python这个名字是从Monty
- python保存numpy数据:numpy.savetxt("result.txt", numpy_data);保存li
- python实现原图裁剪为固定尺寸小图的具体代码,供大家参考,具体内容如下讲解1、代码效果:实现原图裁剪为固定尺寸小图代码import nu
- 关于python写邮件各种功能我们已经介绍过很多,大家有兴趣可以参考:python自动化发送邮件实例讲解python实现发送QQ邮件(可加附
- 1、jquery//获取value值$("#ddlSubmodel").val();//获取text值$("#
- 方法一.Image { max-width:600px;height:
- 一般情况下,使用pip命令安装即可:[root@dthost27 ~]# pip install mysql-python但是在实际工作环境
- 1.作者介绍钱文浩,男,西安工程大学电子信息学院,2021级研究生研究方向:机器视觉与人工智能电子邮件:2414712362@qq.com刘
- 由于周牛的JS知识很多,下面我来分享一下SQL下编写储存过程的初级阶段 在数据库界,在SQL,DB,甲骨文三大数据库中,通过编写储存过程增强
- 本文实例讲述了原生JS实现Ajax通过POST方式与PHP进行交互的方法。分享给大家供大家参考,具体如下:一、代码conn.php<?
- 一:绑定方法:其特点是调用方本身自动作为第一个参数传入1.绑定到对象的方法:调用方是一个对象,该对象自动传入2.方法绑定到类:调用方是类,类
- 场景对分页来说,我们最感兴趣的是下面几个信息总共有多少页当前是第几页是否可以上一页和下一页代码下面代码演示如何获取分页总数及当前页数、跳转到
- 1.项目目录及文件说明:manage.pydjango中的一个命令行工具,管理django项目;__init__.py空文件,告诉pytho
- 核心技术:Python3.7GUI技术:Tkinter (Python已经内置)好多文章写Python GUI之tkinter窗口视窗教程大