Python使用Plotly绘制常见5种动态交互式图表
作者:Python学习与数据挖掘 发布时间:2023-06-08 06:27:59
数据可以帮助我们描述这个世界、阐释自己的想法和展示自己的成果,但如果只有单调乏味的文本和数字,我们却往往能难抓住观众的眼球。而很多时候,一张漂亮的可视化图表就足以胜过千言万语。本文将介绍 5 种基于 Plotly 的可视化方法,你会发现,原来可视化不仅可用直方图和箱形图,还能做得如此动态好看甚至可交互。
对数据科学家来说,讲故事是一个至关重要的技能。为了表达我们的思想并且说服别人,我们需要有效的沟通。而漂漂亮亮的可视化是完成这一任务的绝佳工具。
本文将介绍 5 种非传统的可视化技术,可让你的数据故事更漂亮和更有效。这里将使用 Python 的 Plotly 图形库(也可通过 R 使用),让你可以毫不费力地生成动画图表和交互式图表。
那么,Plotly 有哪些好处?Plotly 的整合能力很强:可与 Jupyter Notebook 一起使用,可嵌入网站,并且完整集成了 Dash——一种用于构建仪表盘和分析应用的出色工具。
启动
如果你还没安装 Plotly,只需在你的终端运行以下命令即可完成安装:
pip install plotly
安装完成后,就开始使用吧!
动画
在研究这个或那个指标的演变时,我们常涉及到时间数据。Plotly 动画工具仅需一行代码就能让人观看数据随时间的变化情况,如下图所示:
代码如下:
import plotly.express as px
from vega_datasets import data
df = data.disasters()
df = df[df.Year > 1990]
fig = px.bar(df,
y="Entity",
x="Deaths",
animation_frame="Year",
orientation='h',
range_x=[0, df.Deaths.max()],
color="Entity")
# improve aesthetics (size, grids etc.)
fig.update_layout(width=1000,
height=800,
xaxis_showgrid=False,
yaxis_showgrid=False,
paper_bgcolor='rgba(0,0,0,0)',
plot_bgcolor='rgba(0,0,0,0)',
title_text='Evolution of Natural Disasters',
showlegend=False)
fig.update_xaxes(title_text='Number of Deaths')
fig.update_yaxes(title_text='')
fig.show()
只要你有一个时间变量来过滤,那么几乎任何图表都可以做成动画。下面是一个制作散点图动画的例子:
import plotly.express as px
df = px.data.gapminder()
fig = px.scatter(
df,
x="gdpPercap",
y="lifeExp",
animation_frame="year",
size="pop",
color="continent",
hover_name="country",
log_x=True,
size_max=55,
range_x=[100, 100000],
range_y=[25, 90],
# color_continuous_scale=px.colors.sequential.Emrld
)
fig.update_layout(width=1000,
height=800,
xaxis_showgrid=False,
yaxis_showgrid=False,
paper_bgcolor='rgba(0,0,0,0)',
plot_bgcolor='rgba(0,0,0,0)')
太阳图
太阳图(sunburst chart)是一种可视化 group by 语句的好方法。如果你想通过一个或多个类别变量来分解一个给定的量,那就用太阳图吧。
假设我们想根据性别和每天的时间分解平均小费数据,那么相较于表格,这种双重 group by 语句可以通过可视化来更有效地展示。
这个图表是交互式的,让你可以自己点击并探索各个类别。你只需要定义你的所有类别,并声明它们之间的层次结构(见以下代码中的 parents 参数)并分配对应的值即可,这在我们案例中即为 group by 语句的输出。
import plotly.graph_objects as go
import plotly.express as px
import numpy as np
import pandas as pd
df = px.data.tips()
fig = go.Figure(go.Sunburst(
labels=["Female", "Male", "Dinner", "Lunch", 'Dinner ', 'Lunch '],
parents=["", "", "Female", "Female", 'Male', 'Male'],
values=np.append(
df.groupby('sex').tip.mean().values,
df.groupby(['sex', 'time']).tip.mean().values),
marker=dict(colors=px.colors.sequential.Emrld)),
layout=go.Layout(paper_bgcolor='rgba(0,0,0,0)',
plot_bgcolor='rgba(0,0,0,0)'))
fig.update_layout(margin=dict(t=0, l=0, r=0, b=0),
title_text='Tipping Habbits Per Gender, Time and Day')
fig.show()
现在我们向这个层次结构再添加一层:
为此,我们再添加另一个涉及三个类别变量的 group by 语句的值。
import plotly.graph_objects as go
import plotly.express as px
import pandas as pd
import numpy as np
df = px.data.tips()
fig = go.Figure(go.Sunburst(labels=[
"Female", "Male", "Dinner", "Lunch", 'Dinner ', 'Lunch ', 'Fri', 'Sat',
'Sun', 'Thu', 'Fri ', 'Thu ', 'Fri ', 'Sat ', 'Sun ', 'Fri ', 'Thu '
],
parents=[
"", "", "Female", "Female", 'Male', 'Male',
'Dinner', 'Dinner', 'Dinner', 'Dinner',
'Lunch', 'Lunch', 'Dinner ', 'Dinner ',
'Dinner ', 'Lunch ', 'Lunch '
],
values=np.append(
np.append(
df.groupby('sex').tip.mean().values,
df.groupby(['sex',
'time']).tip.mean().values,
),
df.groupby(['sex', 'time',
'day']).tip.mean().values),
marker=dict(colors=px.colors.sequential.Emrld)),
layout=go.Layout(paper_bgcolor='rgba(0,0,0,0)',
plot_bgcolor='rgba(0,0,0,0)'))
fig.update_layout(margin=dict(t=0, l=0, r=0, b=0),
title_text='Tipping Habbits Per Gender, Time and Day')
fig.show()
平行类别
另一种探索类别变量之间关系的方法是以下这种流程图。你可以随时拖放、高亮和浏览值,非常适合演示时使用。
代码如下:
import plotly.express as px
from vega_datasets import data
import pandas as pd
df = data.movies()
df = df.dropna()
df['Genre_id'] = df.Major_Genre.factorize()[0]
fig = px.parallel_categories(
df,
dimensions=['MPAA_Rating', 'Creative_Type', 'Major_Genre'],
color="Genre_id",
color_continuous_scale=px.colors.sequential.Emrld,
)
fig.show()
平行坐标图
平行坐标图是上面的图表的连续版本。这里,每一根弦都代表单个观察。这是一种可用于识别离群值(远离其它数据的单条线)、聚类、趋势和冗余变量(比如如果两个变量在每个观察上的值都相近,那么它们将位于同一水平线上,表示存在冗余)的好用工具。
代码如下:
import plotly.express as px
from vega_datasets import data
import pandas as pd
df = data.movies()
df = df.dropna()
df['Genre_id'] = df.Major_Genre.factorize()[0]
fig = px.parallel_coordinates(
df,
dimensions=[
'IMDB_Rating', 'IMDB_Votes', 'Production_Budget', 'Running_Time_min',
'US_Gross', 'Worldwide_Gross', 'US_DVD_Sales'
],
color='IMDB_Rating',
color_continuous_scale=px.colors.sequential.Emrld)
fig.show()
量表图和指示器
量表图仅仅是为了好看。在报告 KPI 等成功指标并展示其与你的目标的距离时,可以使用这种图表。
指示器在业务和咨询中非常有用。它们可以通过文字记号来补充视觉效果,吸引观众的注意力并展现你的增长指标。
import plotly.graph_objects as go
fig = go.Figure(go.Indicator(
domain = {'x': [0, 1], 'y': [0, 1]},
value = 4.3,
mode = "gauge+number+delta",
title = {'text': "Success Metric"},
delta = {'reference': 3.9},
gauge = {'bar': {'color': "lightgreen"},
'axis': {'range': [None, 5]},
'steps' : [
{'range': [0, 2.5], 'color': "lightgray"},
{'range': [2.5, 4], 'color': "gray"}],
}))
fig.show()
来源:https://blog.csdn.net/weixin_38037405/article/details/123368334


猜你喜欢
- 1、基础概念什么是网络编程?指在网络环境中,如何实现不在同一物理位置中的计算机之间进行数据通信如果要保证数据通信顺利完成,则需要先了解如下几
- 列表推导式你有一个list: bag = [1, 2, 3, 4, 5]现在你想让所有元素翻倍,让它看起来是这个样子: [2, 4, 6,
- 在项目中发现这样一个问题:sqlserver数据库编码为gbk,使用python3.4+pymssql 查询,中文乱码,经过一番思考问题解决
- 如果你有一堆 PPT 要做,他们的格式是一样的,只是填充的内容不一样,那你就可以使用 Python 来减轻你的负担。PPT 分为内容和格式,
- 一、在CentOS上安装Python31.下载Python3.10源代码文件下载地址:https://www.python.org/down
- 最近一直在研究 Javascript 相关的技术。在《Javascript 高级程序设计》有篇章节着重阐述了优化 Javascri
- 目录前言什么是pip再说 pip, 它就像应用宝下面给我们的手机安装应用宝Centos 安装pip for python2试用pip来安装库
- #coding=gbkfrom xml.dom import minidom,Nodeimport urllib2,re,osdef rea
- MYSQL官方提供了Installer方式安装MYSQL服务以及其他组件,使的Windows下安装,卸载,配置MYSQL变得特别简单。1.
- 前言服务器的相关知识曾经让我非常困惑。我相信还有很多的Python开发者和我有着类似的遭遇。本文主要介绍了python下如何查询CS * 精英
- MySQL死锁问题是很多程序员在项目开发中常遇到的问题,现就MySQL死锁及解决方法详解如下:1、MySQL常用存储引擎的锁机制MyISAM
- 前言调用,让客户端可以更具自身情况自由选择,服务端工作只需要做一份呢?还别说真还有一个准备好的轮子那就是今天的主角《grpc-gateway
- 将np图片(imread后的图片)转码为base64格式def image_to_base64(image_np):image = cv2.
- 前言最近在工作中遇到一个问题,在创建数据库后连接数据库的时候居然报错了,错误代码是Access denied for user 'r
- 本文实例讲述了PHP观察者模式原理与简单实现方法。分享给大家供大家参考,具体如下:当一个对象状态发生改变后,会影响到其他几个对象的改变,这时
- Python 内置的 itertools 模块包含了一系列用来产生不同类型迭代器的函数或类,这些函数的返回都是一个迭代器,我们可以通过 fo
- Hi, 大家好~ 好久没有发有营养的东西,今天就扔一篇最近热点的Google Chrome 浏览器的试用心得吧。先说个比较搞的事情,Goog
- 在应用程序的开发中,有些输入信息是动态的,比如我们要注册一个员工的工作经历,比如下图如果做成死的,只能填写三个,如果是四个呢?或者更多呢,那
- 涉及到详情页爬取目录结构:kaoshi_bqg.pyimport scrapyfrom scrapy.spiders import Rule
- 测试把txt文件导入至mysql数据库中: table: txt文件:D:/data.txt (txt文件下载)txt中使用 '\N