Python利用imshow制作自定义渐变填充柱状图(colorbar)
作者:晚亭听铃 发布时间:2023-07-14 00:27:57
标签:Python,柱状图
目的
在各种各样的理论计算中,常常需要绘制各种填充图,绘制完后需要加渐变填充的colorbar。可是有些软件如VMD,colorbar渲染后颜色分布有些失真,不能较准确的表达各颜色对应的数值。用ps中的渐变填充可以解决该问题,但很多电脑配置较低,不能很好的运行ps。Python也可以直接绘制colorbar,填充颜色就好。如cmap中的bwr渐变本人就比较常用。然而,有时候颜色范围是负数范围多于正数范围(如:colorbar需要表示 [-60,40]这段,蓝色表示负数,红色表示正数,白色应该在colorbar由下往上60%处),bwr渐变将white置于50%处显得不够合理,因此需要自定义填充。本文以imshow() 函数来进行填充柱状图达到自定义colorbar的目的。interpolation=‘bicubic' 可以很好的做出渐变效果。
代码
# -*- coding: utf-8 -*-
"""
Created on Wed Dec 9 10:36:54 2020
@author: fya
"""
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import ListedColormap,LinearSegmentedColormap
import matplotlib as mpl
fig, ax = plt.subplots(dpi=96)
ax.set(xlim=(1,10), ylim=(-0.1,101), autoscale_on=False) #创建图像范围
a = np.array([[1, 1],
[2, 2],
[3, 3],
[4, 4],
[5, 5]]) #每种渐变色分成五段(array五行),数字表示在colormap对应的深浅
print(a.shape)
clist=['white','blue'] #线性变化颜色由上面array值 小到大,越小,越白,达到上白下蓝的渐变效果
clist2=['red','white'] #渐变色2,用于白色到红色填充,array越小,越红,达到上红下白的效果
newcmp = LinearSegmentedColormap.from_list('chaos',clist)
newcmp2 = LinearSegmentedColormap.from_list('chaos',clist2)
plt.imshow(a,cmap=newcmp,interpolation='bicubic',extent=(1,10,0,60))#60%都是蓝色到白色渐变
plt.imshow(a,cmap=newcmp2,interpolation='bicubic',extent=(1,10,60,100)) #白色设置在60%处
frame = plt.gca() #读取当前图层
ax.yaxis.tick_right() #纵坐标移到右边
ax.set_yticklabels(('-80','-60','-40','-20','0','20','40')) #自定义yticks显示的值,第一个label不显示
frame.spines['top'].set_visible(False) #上框线不显示
frame.spines['bottom'].set_visible(False)
frame.spines['right'].set_visible(False)
frame.spines['left'].set_visible(False)
plt.xticks([]) #x坐标不要
plt.show()
fig.savefig('colorbar.tif',dpi=600,format='tif')
print('Done!')
#N = 10
#x = np.arange(N) + 0.15
#y = np.random.rand(N)
#width = 0.4
#for x, y in zip(x, y):
#ax.imshow(a, interpolation='bicubic', extent=(x, x+width, 0, y), cmap=plt.cm.Blues_r)
#ax.set_aspect('auto')
#plt.show()
代码2,渐变色分100段
# -*- coding: utf-8 -*-
"""
Created on Wed Dec 9 10:36:54 2020
@author: fanyiang
"""
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import ListedColormap,LinearSegmentedColormap
import matplotlib as mpl
import pandas as pd
import os
fig, ax = plt.subplots(dpi=96)
ax.set(xlim=(1,10), ylim=(-0.1,101), autoscale_on=False)
#a = np.array([[1, 1],
#[2, 2],
#[3, 3],
#[4, 4],
#[5, 5]]) #每种渐变色分成五段(array五行),数字表示在colormap对应的深浅
avalue=locals()
dfvalue=locals()
for i in range(1,101):
avalue['a'+str(i)]=np.array([[i,i]]) #渐变色分为100段,分的更细
dfvalue['df'+str(i)]=pd.DataFrame(avalue['a'+str(i)]) #转dataframe
df=dfvalue['df'+str(i)]
df.to_csv("temp.csv", mode='a',header=None) #暂存csv文件,第一列会把每一次循环的index放进去
df3=pd.read_csv('temp.csv',header=None)#读取csv
df3.columns=['序号','x','y']#column命名,第一列废弃
df3=df3.drop('序号',axis=1)#删除第一列
a=np.array(df3) #转array
print(df3.head())
#a=np.vstack((a1,a2,a3,a4,a5,a6,a7,a8,a9,a10))
print(a)
clist=['white','blue'] #线性变化颜色由上面array值 小到大
clist2=['red','white']
newcmp = LinearSegmentedColormap.from_list('chaos',clist)
newcmp2 = LinearSegmentedColormap.from_list('chaos',clist2)
plt.imshow(a,cmap=newcmp,interpolation='bicubic',extent=(1,10,0,60))
plt.imshow(a,cmap=newcmp2,interpolation='bicubic',extent=(1,10,60,100)) #白色设置在60%处
frame = plt.gca() #读取当前图层
ax.yaxis.tick_right() #纵坐标移到右边
ax.set_yticklabels(('-80','-60','-40','-20','0','20','40')) #自定义yticks显示的值,第一个label不显示
frame.spines['top'].set_visible(False) #上框线不显示
frame.spines['bottom'].set_visible(False)
frame.spines['right'].set_visible(False)
frame.spines['left'].set_visible(False)
plt.xticks([]) #x坐标不要
plt.show()
fig.savefig('colorbar.tif',dpi=600,format='tif')
os.remove("temp.csv") #删除临时的csv文件
print('Done!')
#N = 10
#x = np.arange(N) + 0.15
#y = np.random.rand(N)
#width = 0.4
#for x, y in zip(x, y):
#ax.imshow(a, interpolation='bicubic', extent=(x, x+width, 0, y), cmap=plt.cm.Blues_r)
#ax.set_aspect('auto')
#plt.show()
效果
效果1
效果2
来源:https://blog.csdn.net/kelvinfanyiang/article/details/110920391


猜你喜欢
- 1.简介Psycopg是一种用于执行SQL语句的PythonAPI,可以为PostgreSQL、openGauss数据库提供统一访问接口,应
- 利用序列产生主键值。 序列(Sequence)是一种可以被多个用户使用的用于产生一系列唯一数字的数据库对象。序列定义存储在数据字典中,通过提
- 近期,我做了一个娱乐门户的投票系统,也是被刷票搞的焦头烂额,一切可用的方法都用了。但都不是太理想,最终,琢磨出来了下面的方法,我做成了流程图
- This is a {t}. {name}是一个很强大的字符串模板解析方法。它接受三个参数,分别是{args.text},{args.obj
- 1、列表的创建与遍历与整数和字符串不同,列表要处理一组数据。因此,列表必须通过显式的数据赋值才能生成,简单将一个列表赋值给另一个列表不会生成
- 例子:Response.Cookies("letwego")("visiter")="84
- 当我们提到一门编程语言的效率时:通常有两层意思,第一是开发效率,这是对程序员而言,完成编码所需要的时间;另一个是运行效率,这是对计算机而言,
- 本文实例讲述了PHP实现上传文件并存进数据库的方法。分享给大家供大家参考。具体如下:show_add.php文件如下:<?php &n
- 效果图展示:源码查看【功能说明】利用insertBefore制作简单的循环插空效果【HTML代码说明】<ul class="
- 创意404页面的文章我们似乎已经出过两篇了,今天hongkiat又带来了60个创意404页面.相关404页面设计文章:国外404错误页面的创
- 如何做一个文本书写器?我们有下面的的函数,可做“文本书写器”:<%function WriteToFile(FileName
- 如何判断一个数值(字符串)为整数不严格检查方法浮点数的自带方法is_integer()如果确定输入的内容为浮点数,是可以直接使用float数
- 随着编程语言的发展,Go 还很年轻。它于 2009 年 11 月 10 日首次发布。其创建者Robert GriesemerRob Pike
- 创建:list = [5,7,9]取值和改值:list[1] = list[1] * 5列表尾插入:list.append(4)去掉第0个值
- 备份多个数据库可以使用如下命令:mysqldump -uroot -p123456 --databases test1 test2 test
- 本文实例讲述了Python3读取UTF-8文件及统计文件行数的方法。分享给大家供大家参考。具体实现方法如下:'''&
- Item Pipeline简介Item管道的主要责任是负责处理有蜘蛛从网页中抽取的Item,他的主要任务是清晰、验证和存储数据。当页面被蜘蛛
- 一、模型参数的保存和加载 torch.save(module.state_dict(), path):使用module.state
- 在使用python 对wordpress tag 进行细化代码处理时,遇到了调用MySQLdb模块时的出错,由于错误提示和问题原因相差甚远,
- 1.whl包whl格式本质上是一个压缩包,里面包含了py文件,以及经过编译的pyd文件。使得可以在不具备编译环境的情况下,选择适合自己的py