python分布式环境下的限流器的示例
作者:扎心了老铁 发布时间:2023-07-11 19:25:38
项目中用到了限流,受限于一些实现方式上的东西,手撕了一个简单的服务端限流器。
服务端限流和客户端限流的区别,简单来说就是:
1)服务端限流
对接口请求进行限流,限制的是单位时间内请求的数量,目的是通过有损来换取高可用。
例如我们的场景是,有一个服务接收请求,处理之后,将数据bulk到Elasticsearch中进行索引存储,bulk索引是一个很耗费资源的操作,如果遭遇到请求流量激增,可能会压垮Elasticsearch(队列阻塞,内存激增),所以需要对流量的峰值做一个限制。
2)客户端限流
限制的是客户端进行访问的次数。
例如,线程池就是一个天然的限流器。限制了并发个数max_connection,多了的就放到缓冲队列里排队,排队搁不下了>queue_size就扔掉。
本文是服务端限流器。
我这个限流器的优点:
1)简单
2)管事
缺点:
1)不能做到平滑限流
例如大家尝尝说的令牌桶算法和漏桶算法(我感觉这两个算法本质上都是一个事情)可以实现平滑限流。什么是平滑限流?举个栗子,我们要限制5秒钟内访问数不超过1000,平滑限流能做到,每秒200个,5秒钟不超过1000,很平衡;非平滑限流可能,在第一秒就访问了1000次,之后的4秒钟全部限制住。•2)不灵活
只实现了秒级的限流。
支持两个场景:
1)对于单进程多线程场景(使用线程安全的Queue做全局变量)
这种场景下,只部署了一个实例,对这个实例进行限流。在生产环境中用的很少。
2)对于多进程分布式场景(使用redis做全局变量)
多实例部署,一般来说生产环境,都是这样的使用场景。
在这样的场景下,需要对流量进行整体的把控。例如,user服务部署了三个实例,对外暴露query接口,要做的是对接口级的流量限制,也就是对query这个接口整体允许多大的峰值,而不去关心到底负载到哪个实例。
题外话,这个可以通过nginx做。
下面说一下限流器的实现吧。
1、接口BaseRateLimiter
按照我的思路,先定义一个接口,也可以叫抽象类。
初始化的时候,要配置rate,限流器的限速。
提供一个抽象方法,acquire(),调用这个方法,返回是否限制流量。
class BaseRateLimiter(object):
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def __init__(self, rate):
self.rate = rate
@abc.abstractmethod
def acquire(self, count):
return
2、单进程多线程场景的限流ThreadingRateLimiter
继承BaseRateLimiter抽象类,使用线程安全的Queue作为全局变量,来消除竞态影响。
后台有个进程每秒钟清空一次queue;
当请求来了,调用acquire函数,queue incr一次,如果大于限速了,就返回限制。否则就允许访问。
class ThreadingRateLimiter(BaseRateLimiter):
def __init__(self, rate):
BaseRateLimiter.__init__(self, rate)
self.queue = Queue.Queue()
threading.Thread(target=self._clear_queue).start()
def acquire(self, count=1):
self.queue.put(1, block=False)
return self.queue.qsize() < self.rate
def _clear_queue(self):
while 1:
time.sleep(1)
self.queue.queue.clear()
2、分布式场景下的限流DistributeRateLimiter
继承BaseRateLimiter抽象类,使用外部存储作为共享变量,外部存储的访问方式为cache。
class DistributeRateLimiter(BaseRateLimiter):
def __init__(self, rate, cache):
BaseRateLimiter.__init__(self, rate)
self.cache = cache
def acquire(self, count=1, expire=3, key=None, callback=None):
try:
if isinstance(self.cache, Cache):
return self.cache.fetchToken(rate=self.rate, count=count, expire=expire, key=key)
except Exception, ex:
return True
为了解耦和灵活性,我们实现了Cache类。提供一个抽象方法getToken()
如果你使用redis的话,你就继承Cache抽象类,实现通过redis获取令牌的方法。
如果使用mysql的话,你就继承Cache抽象类,实现通过mysql获取令牌的方法。
cache抽象类
class Cache(object):
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def __init__(self):
self.key = "DEFAULT"
self.namespace = "RATELIMITER"
@abc.abstractmethod
def fetchToken(self, rate, key=None):
return
给出一个redis的实现RedisTokenCache
每秒钟创建一个key,并且对请求进行计数incr,当这一秒的计数值已经超过了限速rate,就拿不到token了,也就是限制流量。
对每秒钟创建出的key,让他超时expire。保证key不会持续占用存储空间。
没有什么难点,这里使用redis事务,保证incr和expire能同时执行成功。
class RedisTokenCache(Cache):
def __init__(self, host, port, db=0, password=None, max_connections=None):
Cache.__init__(self)
self.redis = redis.Redis(
connection_pool=
redis.ConnectionPool(
host=host, port=port, db=db,
password=password,
max_connections=max_connections
))
def fetchToken(self, rate=100, count=1, expire=3, key=None):
date = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
key = ":".join([self.namespace, key if key else self.key, date])
try:
current = self.redis.get(key)
if int(current if current else "0") > rate:
raise Exception("to many requests in current second: %s" % date)
else:
with self.redis.pipeline() as p:
p.multi()
p.incr(key, count)
p.expire(key, int(expire if expire else "3"))
p.execute()
return True
except Exception, ex:
return False
多线程场景下测试代码
limiter = ThreadingRateLimiter(rate=10000)
def job():
while 1:
if not limiter.acquire():
print '限流'
else:
print '正常'
threads = [threading.Thread(target=job) for i in range(10)]
for thread in threads:
thread.start()
分布式场景下测试代码
token_cache = RedisTokenCache(host='10.93.84.53', port=6379, password='bigdata123')
limiter = DistributeRateLimiter(rate=10000, cache=token_cache)
r = redis.Redis(connection_pool=redis.ConnectionPool(host='10.93.84.53', port=6379, password='bigdata123'))
def job():
while 1:
if not limiter.acquire():
print '限流'
else:
print '正常'
threads = [multiprocessing.Process(target=job) for i in range(10)]
for thread in threads:
thread.start()
可以自行跑一下。
说明:
我这里的限速都是秒级别的,例如限制每秒400次请求。有可能出现这一秒的前100ms,就来了400次请求,后900ms就全部限制住了。也就是不能平滑限流。
不过如果你后台的逻辑有队列,或者线程池这样的缓冲,这个不平滑的影响其实不大。
来源:http://www.cnblogs.com/kangoroo/p/7700758.html?utm_source=tuicool&utm_medium=referral


猜你喜欢
- 以下内容来自CHATGPT,其中PGADMIN经实验,有效1、在MYSQL中使用:可以使用GROUP_CONCAT函数来实现相同名称的多行字
- 思路:1.读取所有文章标题;2.用“结巴分词”的工具包进行文章标题的词语分割;3.用“sklearn”的工具包计算Tf-idf(词频-逆文档
- IE 5.5 中的 JScript 版本是 5.5 版,它比以前版本的 JScript 中多了如数组的 push、pop、shift、uns
- 前言笔者用的是mac开发,但是mac自带的php功能安装十分不方便,并且和线上的linux开发环境不一致。在没有用docker之前一直用va
- 这是工作期间同事想要个截完图之后可以显示并且永远前置的截图小工具(即不会被其他程序覆盖)直接上代码:# # -*- coding: utf-
- 1. 文件注释File -> settings -> Editor -> File and Code Templates
- yolov5的head修改为decouple headyolox的decoupled head结构本来想将yolov5的head修改为dec
- python time模块计算时间之间的差距练习题1. 当前月1号对应的0点的时间戳# 定义一个当前月分的一号0点字符串格式的时间 now_
- 第一种是最传统的写法,用存储过程中的变量作为分页的乘数 代码如下:[c-sharp] view plaincopyprint?create
- 简单说操作的步骤:1.连接数据库2.将SQL语句发送到数据库3.执行SQL语句这里举个例子:在一个数据库中有个students表,表中有学号
- 前言多人协作的项目里,要保证代码的质量,自然离不开单元测试。开发完一个功能后肯定要对所写的代码进行测试,测试没有问题之后再合并到代码库供他人
- 1. 基本介绍tensorflow设备内存管理模块实现了一个best-fit with coalescing算法(后文简称bfc算法)。bf
- 我们现在使用的验证手段都是以验证码为主,让用户根据图片输入验证字符,这种方法的安全度尚可,但会给用户带来一些不便和困扰,比如这个雅虎的验证码
- 一、线程编程(Thread)1、线程基本概念1.1、什么事线程线程被称为轻量级的进程线程也可以使用计算机多核资源,是多任务编程方式线程是系统
- 包括安装时提示有挂起的操作、收缩数据库、压缩数据库、转移数据库给新用户以已存在用户权限、检查备份集、修复数据库等。 (一)挂起操作在安装S
- 本文实例为大家分享了js实现九宫格布局效果的具体代码,供大家参考,具体内容如下效果代码如下:<!DOCTYPE html><
- 关于Python语言,众说纷纭,但无外乎两种,强大,垃圾。大多数人还是对Python持肯定意见,认为它很强大。前些天和两个的大学同学聊天,一
- 我们最终的视图技巧利用了一个高级python技术。 假设你发现自己在各个不同视图里重复了大量代码,就像 这个例子:def my_view1(
- 1.多边形的绘制案例# 多边形的绘制案例import turtledef main():turtle.color("green&q
- 感谢大家对《 CSS Sprites 样式生成工具 》的喜爱,综合了1.x版本时大家所提出来的意见和建议,2.0版本主要的改变有下面几点:修