网络编程
位置:首页>> 网络编程>> Python编程>> 浅谈sklearn中predict与predict_proba区别

浅谈sklearn中predict与predict_proba区别

作者:GitzLiu  发布时间:2023-11-08 03:53:45 

标签:sklearn,predict,proba

predict_proba 返回的是一个 n 行 k 列的数组,列是标签(有排序), 第 i 行 第 j 列上的数值是模型预测 第 i 个预测样本为某个标签的概率,并且每一行的概率和为1。

predict 直接返回的是预测 的标签。

具体见下面示例:


# conding :utf-8
from sklearn.linear_model import LogisticRegression
import numpy as np
x_train = np.array([[1,2,3],
         [1,3,4],
         [2,1,2],
         [4,5,6],
         [3,5,3],
         [1,7,2]])

y_train = np.array([3, 3, 3, 2, 2, 2])

x_test = np.array([[2,2,2],
         [3,2,6],
         [1,7,4]])

clf = LogisticRegression()
clf.fit(x_train, y_train)

# 返回预测标签
print(clf.predict(x_test))

# 返回预测属于某标签的概率
print(clf.predict_proba(x_test))

# [2 3 2]
#
# [[0.56651809 0.43348191]
# [0.15598162 0.84401838]
# [0.86852502 0.13147498]]
# 分析结果:
# 标签是 2,3 共两个,所以predict_proba返回的为2列,且是排序的(第一列为标签2,第二列为标签3),
# 返回矩阵的行数是测试样本个数 因此为3行
# 预测[2,2,2]的标签是2的概率为0.56651809,3的概率为0.43348191
#
# 预测[3,2,6]的标签是2的概率为0.15598162,3的概率为0.84401838
#
# 预测[1,7,4]的标签是2的概率为0.86852502,3的概率为0.13147498

补充知识:sklearn中predict与predict_proba的识别结果不一致

今天训练了好久的决策树模型在测试的时候发现个bug,使用predict得到的结果居然不是predict_proba中最大数值的索引!因为脚本中需要模型的置信度,所以希望拿到predict_proba的类别概率。

经过胡乱分析发现predict_proba得到的维度比总类别数少了几个,经过测试发现就是这个造成的,即训练集中有部分类别样本数为0。这个问题比较隐蔽,记录一下方便天涯沦落人绕坑。

Tip:在sklearn的train_test_split中有一个参数可以强制测试集和训练集的数据分布一致,也就不会导致缺类别的问题。

来源:https://blog.csdn.net/GitzLiu/article/details/81952431

0
投稿

猜你喜欢

手机版 网络编程 asp之家 www.aspxhome.com