基于TensorFlow的CNN实现Mnist手写数字识别
作者:Asia-Lee 发布时间:2022-03-13 11:20:28
本文实例为大家分享了基于TensorFlow的CNN实现Mnist手写数字识别的具体代码,供大家参考,具体内容如下
一、CNN模型结构
输入层:Mnist数据集(28*28)
第一层卷积:感受视野5*5,步长为1,卷积核:32个
第一层池化:池化视野2*2,步长为2
第二层卷积:感受视野5*5,步长为1,卷积核:64个
第二层池化:池化视野2*2,步长为2
全连接层:设置1024个神经元
输出层:0~9十个数字类别
二、代码实现
import tensorflow as tf
#Tensorflow提供了一个类来处理MNIST数据
from tensorflow.examples.tutorials.mnist import input_data
import time
#载入数据集
mnist=input_data.read_data_sets('MNIST_data',one_hot=True)
#设置批次的大小
batch_size=100
#计算一共有多少个批次
n_batch=mnist.train.num_examples//batch_size
#定义初始化权值函数
def weight_variable(shape):
initial=tf.truncated_normal(shape,stddev=0.1)
return tf.Variable(initial)
#定义初始化偏置函数
def bias_variable(shape):
initial=tf.constant(0.1,shape=shape)
return tf.Variable(initial)
#卷积层
def conv2d(input,filter):
return tf.nn.conv2d(input,filter,strides=[1,1,1,1],padding='SAME')
#池化层
def max_pool_2x2(value):
return tf.nn.max_pool(value,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
#输入层
#定义两个placeholder
x=tf.placeholder(tf.float32,[None,784]) #28*28
y=tf.placeholder(tf.float32,[None,10])
#改变x的格式转为4维的向量[batch,in_hight,in_width,in_channels]
x_image=tf.reshape(x,[-1,28,28,1])
#卷积、激励、池化操作
#初始化第一个卷积层的权值和偏置
W_conv1=weight_variable([5,5,1,32]) #5*5的采样窗口,32个卷积核从1个平面抽取特征
b_conv1=bias_variable([32]) #每一个卷积核一个偏置值
#把x_image和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
h_conv1=tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)
h_pool1=max_pool_2x2(h_conv1) #进行max_pooling 池化层
#初始化第二个卷积层的权值和偏置
W_conv2=weight_variable([5,5,32,64]) #5*5的采样窗口,64个卷积核从32个平面抽取特征
b_conv2=bias_variable([64])
#把第一个池化层结果和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
h_conv2=tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)
h_pool2=max_pool_2x2(h_conv2) #池化层
#28*28的图片第一次卷积后还是28*28,第一次池化后变为14*14
#第二次卷积后为14*14,第二次池化后变为了7*7
#经过上面操作后得到64张7*7的平面
#全连接层
#初始化第一个全连接层的权值
W_fc1=weight_variable([7*7*64,1024])#经过池化层后有7*7*64个神经元,全连接层有1024个神经元
b_fc1 = bias_variable([1024])#1024个节点
#把池化层2的输出扁平化为1维
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
#求第一个全连接层的输出
h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)
#keep_prob用来表示神经元的输出概率
keep_prob=tf.placeholder(tf.float32)
h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob)
#初始化第二个全连接层
W_fc2=weight_variable([1024,10])
b_fc2=bias_variable([10])
#输出层
#计算输出
prediction=tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)
#交叉熵代价函数
cross_entropy=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#使用AdamOptimizer进行优化
train_step=tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
#结果存放在一个布尔列表中(argmax函数返回一维张量中最大的值所在的位置)
correct_prediction=tf.equal(tf.argmax(prediction,1),tf.argmax(y,1))
#求准确率(tf.cast将布尔值转换为float型)
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
#创建会话
with tf.Session() as sess:
start_time=time.clock()
sess.run(tf.global_variables_initializer()) #初始化变量
for epoch in range(21): #迭代21次(训练21次)
for batch in range(n_batch):
batch_xs,batch_ys=mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.7}) #进行迭代训练
#测试数据计算出准确率
acc=sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
print('Iter'+str(epoch)+',Testing Accuracy='+str(acc))
end_time=time.clock()
print('Running time:%s Second'%(end_time-start_time)) #输出运行时间
运行结果:
三、TensorFlow主要函数说明
1、卷积层
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)
(1)data_format:表示输入的格式,有两种分别为:“NHWC”和“NCHW”,默认为“NHWC”
(2)input:输入是一个4维格式的(图像)数据,数据的 shape 由 data_format 决定:当 data_format 为“NHWC”输入数据的shape表示为[batch, in_height, in_width, in_channels],分别表示训练时一个batch的图片数量、图片高度、 图片宽度、 图像通道数。当 data_format 为“NHWC”输入数据的shape表示为[batch, in_channels, in_height, in_width]
(3)filter:卷积核是一个4维格式的数据:shape表示为:[height,width,in_channels, out_channels],分别表示卷积核的高、宽、深度(与输入的in_channels应相同)、输出 feature map的个数(即卷积核的个数)。
(4)strides:表示步长:一个长度为4的一维列表,每个元素跟data_format互相对应,表示在data_format每一维上的移动步长。当输入的默认格式为:“NHWC”,则 strides = [batch , in_height , in_width, in_channels]。其中 batch 和 in_channels 要求一定为1,即只能在一个样本的一个通道上的特征图上进行移动,in_height , in_width表示卷积核在特征图的高度和宽度上移动的布长。
(5)padding:表示填充方式:“SAME”表示采用填充的方式,简单地理解为以0填充边缘,当stride为1时,输入和输出的维度相同;“VALID”表示采用不填充的方式,多余地进行丢弃。
对于卷积操作:
2、池化层
#池化层:
#Max pooling:取“池化视野”矩阵中的最大值
tf.nn.max_pool( value, ksize,strides,padding,data_format='NHWC',name=None)
#Average pooling:取“池化视野”矩阵中的平均值
tf.nn.avg_pool(value, ksize,strides,padding,data_format='NHWC',name=None)
参数说明:
(1)value:表示池化的输入:一个4维格式的数据,数据的 shape 由 data_format 决定,默认情况下shape 为[batch, height, width, channels]
(2)ksize:表示池化窗口的大小:一个长度为4的一维列表,一般为[1, height, width, 1],因不想在batch和channels上做池化,则将其值设为1。
(3)其他参数与 tf.nn.cov2d 类型
对于池化操作:
来源:https://blog.csdn.net/asialee_bird/article/details/80460801


猜你喜欢
- pycharm是一款很流行的编写Python程序的编程软件,这篇文章给大家介绍Pycharm使用教程。1、下载pycharmpycharm是
- 高阶函数高阶函数英文叫 Higher-order function,它的定义很简单,就是至少满足下列一个条件的函数:接受一个或多个函数作为输
- 如何用Sleep函数编译一个定时组件?见下: Private Declare Sub Sleep L
- 阅读上一篇:你是真正的用户体验设计者吗? Ⅵ很可怕,是吧!图中翻译:(从内到外)第一层:用户体验第二层:内容管理界面设计顾客关系管理交互设计
- 一个小的解决方法分享:正常安装的情况下,你所需要的包都能在python文件夹下找到,找到你所需要的包 ,把它复制到Python35\Lib\
- 我们想要知道数目的总和,只要通过+就能实现,这是我们在做题上经常用到的符号。但是在python中不能直接使用,我们需要借助一些代码或者函数帮
- 阅读目录tcp协议:流式协议(以数据流的形式通信传输)、安全协议(收发信息都需收到确认信息才能完成收发,是一种双向通道的通信)tcp协议在O
- 前言:array.map() 是一个非常有用的映射函数:它接收一个数组和一个映射函数,然后返回一个新的映射数组。然而,有一个替代 array
- element-ui form或table lable换行问题今天在写项目,突然遇到个需求,需要将form里面的lable换行,百度了下,发
- 本文实例讲述了Python字符串内置函数功能与用法。分享给大家供大家参考,具体如下:字符串内置总结需要注意的是:字符串的单引号和双引号都无法
- Python中,队列是线程间最常用的交换数据的形式。Queue模块是提供队列操作的模块,虽然简单易用,但是不小心的话,还是会出现一些意外。创
- JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式。它基于JavaScript(Standard
- 马上就是圣诞节了,先提前祝大家圣诞快乐!:christmas_tree::christmas_tree::christmas_t
- 前言一个简单的php➕mysql项目学生信息管理系统,用于广大学子完成期末作业的参考,该系统实现增、删、改、查等基本功能。1、登录界面<
- 需求一般Django开发为了保障避免 csrf 的攻击,如果使用Django的模板渲染页面,那么则可以在请求中渲染设置一个csrftoken
- proxytable代理根路径的同时增加其他代理Vue 项目有一个需求,需要对根路径 ‘/’ 进行代
- 本文实例讲述了JSP使用MVC模式完成删除和修改功能的方法。分享给大家供大家参考。具体如下:目标:① 进一步理解MVC模式;② 掌握删除功能
- 摘要: 有个C++项目是读取配置参数文件并打印对应的结果,后来需要多次修改配置文件并运行,于是想到写个python脚本执行这一过程。写一个测
- 本文介绍了python Celery定时任务的示例,分享给大家,具体如下:配置启用Celery的定时任务需要设置CELERYBEAT_SCH
- var str = "hello"; str += " world"; 后台所做工作: 1)创建存储