Python语言实现SIFT算法
作者:米开朗琪罗儿 发布时间:2022-12-30 17:58:14
本文侧重于如何使用Python语言实现SIFT算法
所有程序已打包:基于OpenCV-Python的SIFT算法的实现
一、什么是SIFT算法
SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述。这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子。
二、准备工作
2.1 实验设备
本文在Windows10系统上,使用pycharm软件完成所有实验。
2.2 OpenCV安装
我们可以使用OpenCV库中的cv2.xfeatures2d.SIFT_create()
函数实现SIFT,但由于专利保护,很多版本的OpenCV库已无法提供该函数,目前仅3.4.2.16
版本的OpenCV库可使用此函数。
安装教程:
(1)查看当前版本opencv:进入cmd(组合键win+R,输入cmd),输入conda list
,查看当前pycharm所有库并找到opencv-python,若找不到库,说明没有安装。
(2)卸载原版本(在cmd中输入:pip uninstall opencv
)
(3)安装新版本(在cmd中输入:pip install opencv-python==3.4.2.16 -i "https://pypi.doubanio.com/simple/"
(4)安装附属库(在cmd中输入:pip install opencv-contrib-python==3.4.2.16 -i "https://pypi.doubanio.com/simple/"
)
三、实验工作
3.1 图像选择
这里选择经典的lena图像作为实验对象,为了选择一个待匹配图像,本文使用如下代码对lena图像进行逆时针45°旋转。
from PIL import Image
img = Image.open('lena.png')
img2 = img.rotate(45) # 逆时针旋转45°
img2.save("lena_rot45.png")
img2.show()
参考图像与待匹配图像(即旋转图像)如下图所示:
3.2 程序实现
"""
图像匹配——SIFT点特征匹配实现步骤:
(1)读取图像;
(2)定义sift算子;
(3)通过sift算子对需要匹配的图像进行特征点获取;
a.可获取各匹配图像经过sift算子的特征点数目
(4)可视化特征点(在原图中标记为圆圈);
a.为方便观察,可将匹配图像横向拼接
(5)图像匹配(特征点匹配);
a.通过调整ratio获取需要进行图像匹配的特征点数量(ratio值越大,匹配的线条越密集,但错误匹配点也会增多)
b.通过索引ratio选择固定的特征点进行图像匹配
(6)将待匹配图像通过旋转、变换等方式将其与目标图像对齐
"""
import cv2 # opencv版本需为3.4.2.16
import numpy as np # 矩阵运算库
import time # 时间库
original_lena = cv2.imread('lena.png') # 读取lena原图
lena_rot45 = cv2.imread('lena_rot45.png') # 读取lena旋转45°图
sift = cv2.xfeatures2d.SIFT_create()
# 获取各个图像的特征点及sift特征向量
# 返回值kp包含sift特征的方向、位置、大小等信息;des的shape为(sift_num, 128), sift_num表示图像检测到的sift特征数量
(kp1, des1) = sift.detectAndCompute(original_lena, None)
(kp2, des2) = sift.detectAndCompute(lena_rot45, None)
# 特征点数目显示
print("=========================================")
print("=========================================")
print('lena 原图 特征点数目:', des1.shape[0])
print('lena 旋转图 特征点数目:', des2.shape[0])
print("=========================================")
print("=========================================")
# 举例说明kp中的参数信息
for i in range(2):
print("关键点", i)
print("数据类型:", type(kp1[i]))
print("关键点坐标:", kp1[i].pt)
print("邻域直径:", kp1[i].size)
print("方向:", kp1[i].angle)
print("所在的图像金字塔的组:", kp1[i].octave)
print("=========================================")
print("=========================================")
"""
首先对原图和旋转图进行特征匹配,即图original_lena和图lena_rot45
"""
# 绘制特征点,并显示为红色圆圈
sift_original_lena = cv2.drawKeypoints(original_lena, kp1, original_lena, color=(255, 0, 255))
sift_lena_rot45 = cv2.drawKeypoints(lena_rot45, kp2, lena_rot45, color=(255, 0, 255))
sift_cat1 = np.hstack((sift_original_lena, sift_lena_rot45)) # 对提取特征点后的图像进行横向拼接
cv2.imwrite("sift_cat1.png", sift_cat1)
print('原图与旋转图 特征点绘制图像已保存')
cv2.imshow("sift_point1", sift_cat1)
cv2.waitKey()
# 特征点匹配
# K近邻算法求取在空间中距离最近的K个数据点,并将这些数据点归为一类
start = time.time() # 计算匹配点匹配时间
bf = cv2.BFMatcher()
matches1 = bf.knnMatch(des1, des2, k=2)
print('用于 原图和旋转图 图像匹配的所有特征点数目:', len(matches1))
# 调整ratio
# ratio=0.4:对于准确度要求高的匹配;
# ratio=0.6:对于匹配点数目要求比较多的匹配;
# ratio=0.5:一般情况下。
ratio1 = 0.5
good1 = []
for m1, n1 in matches1:
# 如果最接近和次接近的比值大于一个既定的值,那么我们保留这个最接近的值,认为它和其匹配的点为good_match
if m1.distance < ratio1 * n1.distance:
good1.append([m1])
end = time.time()
print("匹配点匹配运行时间:%.4f秒" % (end-start))
# 通过对good值进行索引,可以指定固定数目的特征点进行匹配,如good[:20]表示对前20个特征点进行匹配
match_result1 = cv2.drawMatchesKnn(original_lena, kp1, lena_rot45, kp2, good1, None, flags=2)
cv2.imwrite("match_result1.png", match_result1)
print('原图与旋转图 特征点匹配图像已保存')
print("=========================================")
print("=========================================")
print("原图与旋转图匹配对的数目:", len(good1))
for i in range(2):
print("匹配", i)
print("数据类型:", type(good1[i][0]))
print("描述符之间的距离:", good1[i][0].distance)
print("查询图像中描述符的索引:", good1[i][0].queryIdx)
print("目标图像中描述符的索引:", good1[i][0].trainIdx)
print("=========================================")
print("=========================================")
cv2.imshow("original_lena and lena_rot45 feature matching result", match_result1)
cv2.waitKey()
# 将待匹配图像通过旋转、变换等方式将其与目标图像对齐,这里使用单应性矩阵。
# 单应性矩阵有八个参数,如果要解这八个参数的话,需要八个方程,由于每一个对应的像素点可以产生2个方程(x一个,y一个),那么总共只需要四个像素点就能解出这个单应性矩阵。
if len(good1) > 4:
ptsA = np.float32([kp1[m[0].queryIdx].pt for m in good1]).reshape(-1, 1, 2)
ptsB = np.float32([kp2[m[0].trainIdx].pt for m in good1]).reshape(-1, 1, 2)
ransacReprojThreshold = 4
# RANSAC算法选择其中最优的四个点
H, status =cv2.findHomography(ptsA, ptsB, cv2.RANSAC, ransacReprojThreshold)
imgout = cv2.warpPerspective(lena_rot45, H, (original_lena.shape[1], original_lena.shape[0]),
flags=cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP)
cv2.imwrite("imgout.png", imgout)
cv2.imshow("lena_rot45's result after transformation", imgout)
cv2.waitKey()
3.3 程序结果
来源:https://blog.csdn.net/qq_42856191/article/details/121306915


猜你喜欢
- 前言上篇文章 一文了解 Go 标准库 strings 常用函数和方法 介绍了 strings 标注库里的一些常用的函数和方法,本文也是以 s
- 本文实例总结了Python列表list常用内建函数。分享给大家供大家参考,具体如下:>>> x = list(range(
- 注:本文所指的YUV均为YUV420中的I420格式(最常见的一种),其他格式不能用以下的代码。位深为8bit时,每个像素占用1字节,对应文
- 本文实例讲述了js自定义trim函数实现删除两端空格功能。分享给大家供大家参考,具体如下:兼容IE低版本浏览器,以及其他一些低版本脚本的浏览
- 前言python参数类型和参数传递形式多样,相对于其他语言python使用会更加灵活。它传参形式一般分为两种:位置传参,关键字传参。传参形式
- count()方法返回obj出现在列表的次数。语法以下是count()方法的语法:list.count(obj)参数
- 一、事件(EVENT)是干什么的 自MySQL5.1.6起,增加了一个非常有特色的功能 - 事件调度器(Event Scheduler),
- photoshop快捷键大全: 工具箱(多种工具共用一个快捷键的可同时按【Shift】加此快捷键选取)相关文章:网页设计软件FrontPag
- 一、注释1.#单行注释2."""多行注释"""3.pycharm多行注释快捷键:
- MYSQL与SQLserver之间存储过程的转换首先先放两个存储过程来进行对比mysql存储过程CREATE DEFINER=`root`@
- 可是,其体积仍然很庞大。所以,在日常工作中,如何给SQL Server的备份文件瘦身,就是很多数据库管理员所关心的问题了。 也许微软的数据库
- 与运算 &举例: 3&5 &n
- 前言python2.x版本的字符编码有时让人很头疼,遇到问题,网上方法可以解决错误,但对原理还是一知半解,本文主要介绍 python 中字符
- asp压缩access数据库(带密码)方法:以下是一个类文件,下面的注解是调用类的方法 注意:如果系统不支持建立Scripting
- 目录1. 序列2. 列表2.1 列表的特性2.1.1 列表的连接操作符和重复操作符2.1.3 列表的索引2.1.4 列表的切片2.1.5 列
- 通常人们使用以下两种方法来执行SQL语句: Set Rs=Conn.Execute(SqlStr) 和&nbs
- 1、环境PyCharmPython 3.6pip安装的依赖包包括:requests 2.25.0、urllib3 1.26.2、docx 0
- 作用:调用方法改为调用对象, 比如 : p.set_name() 改为 p.set_name区别:前者改变get方法,后者改变set方法效果
- 1. 内连接内连接:合并具有同一列的两个以上的表的行,结果集中不包含一个表与另一个表不匹配的行。说人话就是,查询结果只包含它们匹配的行,不匹
- 以前的服务器,由于内存的价格过高,一般配置的内存不是很多,超过4GB的当然就不多了.现在的服务器,配置超过4GB就很多,在配作SQL 数据库