Numpy实现卷积神经网络(CNN)的示例
作者:chenxiangzhen 发布时间:2022-10-06 17:44:17
标签:Numpy,卷积神经网络,CNN,python
import numpy as np
import sys
def conv_(img, conv_filter):
filter_size = conv_filter.shape[1]
result = np.zeros((img.shape))
# 循环遍历图像以应用卷积运算
for r in np.uint16(np.arange(filter_size/2.0, img.shape[0]-filter_size/2.0+1)):
for c in np.uint16(np.arange(filter_size/2.0, img.shape[1]-filter_size/2.0+1)):
# 卷积的区域
curr_region = img[r-np.uint16(np.floor(filter_size/2.0)):r+np.uint16(np.ceil(filter_size/2.0)),
c-np.uint16(np.floor(filter_size/2.0)):c+np.uint16(np.ceil(filter_size/2.0))]
# 卷积操作
curr_result = curr_region * conv_filter
conv_sum = np.sum(curr_result)
# 将求和保存到特征图中
result[r, c] = conv_sum
# 裁剪结果矩阵的异常值
final_result = result[np.uint16(filter_size/2.0):result.shape[0]-np.uint16(filter_size/2.0),
np.uint16(filter_size/2.0):result.shape[1]-np.uint16(filter_size/2.0)]
return final_result
def conv(img, conv_filter):
# 检查图像通道的数量是否与过滤器深度匹配
if len(img.shape) > 2 or len(conv_filter.shape) > 3:
if img.shape[-1] != conv_filter.shape[-1]:
print("错误:图像和过滤器中的通道数必须匹配")
sys.exit()
# 检查过滤器是否是方阵
if conv_filter.shape[1] != conv_filter.shape[2]:
print('错误:过滤器必须是方阵')
sys.exit()
# 检查过滤器大小是否是奇数
if conv_filter.shape[1] % 2 == 0:
print('错误:过滤器大小必须是奇数')
sys.exit()
# 定义一个空的特征图,用于保存过滤器与图像的卷积输出
feature_maps = np.zeros((img.shape[0] - conv_filter.shape[1] + 1,
img.shape[1] - conv_filter.shape[1] + 1,
conv_filter.shape[0]))
# 卷积操作
for filter_num in range(conv_filter.shape[0]):
print("Filter ", filter_num + 1)
curr_filter = conv_filter[filter_num, :]
# 检查单个过滤器是否有多个通道。如果有,那么每个通道将对图像进行卷积。所有卷积的结果加起来得到一个特征图。
if len(curr_filter.shape) > 2:
conv_map = conv_(img[:, :, 0], curr_filter[:, :, 0])
for ch_num in range(1, curr_filter.shape[-1]):
conv_map = conv_map + conv_(img[:, :, ch_num], curr_filter[:, :, ch_num])
else:
conv_map = conv_(img, curr_filter)
feature_maps[:, :, filter_num] = conv_map
return feature_maps
def pooling(feature_map, size=2, stride=2):
# 定义池化操作的输出
pool_out = np.zeros((np.uint16((feature_map.shape[0] - size + 1) / stride + 1),
np.uint16((feature_map.shape[1] - size + 1) / stride + 1),
feature_map.shape[-1]))
for map_num in range(feature_map.shape[-1]):
r2 = 0
for r in np.arange(0, feature_map.shape[0] - size + 1, stride):
c2 = 0
for c in np.arange(0, feature_map.shape[1] - size + 1, stride):
pool_out[r2, c2, map_num] = np.max([feature_map[r: r+size, c: c+size, map_num]])
c2 = c2 + 1
r2 = r2 + 1
return pool_out
import skimage.data
import numpy
import matplotlib
import matplotlib.pyplot as plt
import NumPyCNN as numpycnn
# 读取图像
img = skimage.data.chelsea()
# 转成灰度图像
img = skimage.color.rgb2gray(img)
# 初始化卷积核
l1_filter = numpy.zeros((2, 3, 3))
# 检测垂直边缘
l1_filter[0, :, :] = numpy.array([[[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]])
# 检测水平边缘
l1_filter[1, :, :] = numpy.array([[[1, 1, 1], [0, 0, 0], [-1, -1, -1]]])
"""
第一个卷积层
"""
# 卷积操作
l1_feature_map = numpycnn.conv(img, l1_filter)
# ReLU
l1_feature_map_relu = numpycnn.relu(l1_feature_map)
# Pooling
l1_feature_map_relu_pool = numpycnn.pooling(l1_feature_map_relu, 2, 2)
"""
第二个卷积层
"""
# 初始化卷积核
l2_filter = numpy.random.rand(3, 5, 5, l1_feature_map_relu_pool.shape[-1])
# 卷积操作
l2_feature_map = numpycnn.conv(l1_feature_map_relu_pool, l2_filter)
# ReLU
l2_feature_map_relu = numpycnn.relu(l2_feature_map)
# Pooling
l2_feature_map_relu_pool = numpycnn.pooling(l2_feature_map_relu, 2, 2)
"""
第三个卷积层
"""
# 初始化卷积核
l3_filter = numpy.random.rand(1, 7, 7, l2_feature_map_relu_pool.shape[-1])
# 卷积操作
l3_feature_map = numpycnn.conv(l2_feature_map_relu_pool, l3_filter)
# ReLU
l3_feature_map_relu = numpycnn.relu(l3_feature_map)
# Pooling
l3_feature_map_relu_pool = numpycnn.pooling(l3_feature_map_relu, 2, 2)
"""
结果可视化
"""
fig0, ax0 = plt.subplots(nrows=1, ncols=1)
ax0.imshow(img).set_cmap("gray")
ax0.set_title("Input Image")
ax0.get_xaxis().set_ticks([])
ax0.get_yaxis().set_ticks([])
plt.savefig("in_img1.png", bbox_inches="tight")
plt.close(fig0)
# 第一层
fig1, ax1 = plt.subplots(nrows=3, ncols=2)
ax1[0, 0].imshow(l1_feature_map[:, :, 0]).set_cmap("gray")
ax1[0, 0].get_xaxis().set_ticks([])
ax1[0, 0].get_yaxis().set_ticks([])
ax1[0, 0].set_title("L1-Map1")
ax1[0, 1].imshow(l1_feature_map[:, :, 1]).set_cmap("gray")
ax1[0, 1].get_xaxis().set_ticks([])
ax1[0, 1].get_yaxis().set_ticks([])
ax1[0, 1].set_title("L1-Map2")
ax1[1, 0].imshow(l1_feature_map_relu[:, :, 0]).set_cmap("gray")
ax1[1, 0].get_xaxis().set_ticks([])
ax1[1, 0].get_yaxis().set_ticks([])
ax1[1, 0].set_title("L1-Map1ReLU")
ax1[1, 1].imshow(l1_feature_map_relu[:, :, 1]).set_cmap("gray")
ax1[1, 1].get_xaxis().set_ticks([])
ax1[1, 1].get_yaxis().set_ticks([])
ax1[1, 1].set_title("L1-Map2ReLU")
ax1[2, 0].imshow(l1_feature_map_relu_pool[:, :, 0]).set_cmap("gray")
ax1[2, 0].get_xaxis().set_ticks([])
ax1[2, 0].get_yaxis().set_ticks([])
ax1[2, 0].set_title("L1-Map1ReLUPool")
ax1[2, 1].imshow(l1_feature_map_relu_pool[:, :, 1]).set_cmap("gray")
ax1[2, 0].get_xaxis().set_ticks([])
ax1[2, 0].get_yaxis().set_ticks([])
ax1[2, 1].set_title("L1-Map2ReLUPool")
plt.savefig("L1.png", bbox_inches="tight")
plt.close(fig1)
# 第二层
fig2, ax2 = plt.subplots(nrows=3, ncols=3)
ax2[0, 0].imshow(l2_feature_map[:, :, 0]).set_cmap("gray")
ax2[0, 0].get_xaxis().set_ticks([])
ax2[0, 0].get_yaxis().set_ticks([])
ax2[0, 0].set_title("L2-Map1")
ax2[0, 1].imshow(l2_feature_map[:, :, 1]).set_cmap("gray")
ax2[0, 1].get_xaxis().set_ticks([])
ax2[0, 1].get_yaxis().set_ticks([])
ax2[0, 1].set_title("L2-Map2")
ax2[0, 2].imshow(l2_feature_map[:, :, 2]).set_cmap("gray")
ax2[0, 2].get_xaxis().set_ticks([])
ax2[0, 2].get_yaxis().set_ticks([])
ax2[0, 2].set_title("L2-Map3")
ax2[1, 0].imshow(l2_feature_map_relu[:, :, 0]).set_cmap("gray")
ax2[1, 0].get_xaxis().set_ticks([])
ax2[1, 0].get_yaxis().set_ticks([])
ax2[1, 0].set_title("L2-Map1ReLU")
ax2[1, 1].imshow(l2_feature_map_relu[:, :, 1]).set_cmap("gray")
ax2[1, 1].get_xaxis().set_ticks([])
ax2[1, 1].get_yaxis().set_ticks([])
ax2[1, 1].set_title("L2-Map2ReLU")
ax2[1, 2].imshow(l2_feature_map_relu[:, :, 2]).set_cmap("gray")
ax2[1, 2].get_xaxis().set_ticks([])
ax2[1, 2].get_yaxis().set_ticks([])
ax2[1, 2].set_title("L2-Map3ReLU")
ax2[2, 0].imshow(l2_feature_map_relu_pool[:, :, 0]).set_cmap("gray")
ax2[2, 0].get_xaxis().set_ticks([])
ax2[2, 0].get_yaxis().set_ticks([])
ax2[2, 0].set_title("L2-Map1ReLUPool")
ax2[2, 1].imshow(l2_feature_map_relu_pool[:, :, 1]).set_cmap("gray")
ax2[2, 1].get_xaxis().set_ticks([])
ax2[2, 1].get_yaxis().set_ticks([])
ax2[2, 1].set_title("L2-Map2ReLUPool")
ax2[2, 2].imshow(l2_feature_map_relu_pool[:, :, 2]).set_cmap("gray")
ax2[2, 2].get_xaxis().set_ticks([])
ax2[2, 2].get_yaxis().set_ticks([])
ax2[2, 2].set_title("L2-Map3ReLUPool")
plt.savefig("L2.png", bbox_inches="tight")
plt.close(fig2)
# 第三层
fig3, ax3 = plt.subplots(nrows=1, ncols=3)
ax3[0].imshow(l3_feature_map[:, :, 0]).set_cmap("gray")
ax3[0].get_xaxis().set_ticks([])
ax3[0].get_yaxis().set_ticks([])
ax3[0].set_title("L3-Map1")
ax3[1].imshow(l3_feature_map_relu[:, :, 0]).set_cmap("gray")
ax3[1].get_xaxis().set_ticks([])
ax3[1].get_yaxis().set_ticks([])
ax3[1].set_title("L3-Map1ReLU")
ax3[2].imshow(l3_feature_map_relu_pool[:, :, 0]).set_cmap("gray")
ax3[2].get_xaxis().set_ticks([])
ax3[2].get_yaxis().set_ticks([])
ax3[2].set_title("L3-Map1ReLUPool")
plt.savefig("L3.png", bbox_inches="tight")
plt.close(fig3)
来源:https://www.cnblogs.com/chenxiangzhen/archive/2004/01/13/10384955.html


猜你喜欢
- 前言 :上一篇文章:如何使用python生成大量数据写入es数据库并查询操作模拟学生个人信息写入es数据库,包括姓名、性别、年龄、特点、科目
- 导言在前面一些教程中,我们已经看到如何使用应用程序框架,ObjectDataSource,以及那些提供增、改、删功能的数据Web控件。在我们
- 简介观察者模式又叫发布订阅模式(Publish/Subscribe),它定义了一种一对多的关系,让多个观察者对象同时监听某一个主题对象,这个
- MySQL为开源数据库,因此可以基于源码实现安装。基于源码安装有更多的灵活性。也就是说我们可以针对自己的硬件平台选用合适的编译器来优化编译后
- 下载golint下载golang 的 lint,下载地址:https://github.com/golang/lintmkdir -p $G
- 如下所示:import xlrdimport pandas as pdfrom pandas import DataFrameDATA_DI
- 前言本文主要给大家介绍的是关于Python中表达式x += y和x = x+y 区别的相关内容,分享出来供大家参考学习,下面来看看详细的介绍
- 首先备份数据库,以防不必要的损失。而后对所有被挂马的小于8000字符的varchar字段执行 update 表名 set 字段名=repla
- 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最
- 我们平时生活的娱乐中,看电影是大部分小伙伴都喜欢的事情。周围的人总会有意无意的在谈论,有什么影片上映,好不好看之类的话题,没事的时候谈论电影
- 脚本之家下载:JetBrains DataGrip 2020.1 免费中文正式版(附汉化包+安装教程) 最新DataGrip202
- Vue实现文本编译详情模板编译在数据劫持中,我们完成了Vue中data选项中数据的初始操作。这之后需要将html字符串编译为render函数
- 前言在前几年,如果你和嵌入式开发人员推荐Python,大概会是这样一种场景:A:”诶,老王,你看Python开发这么方便
- <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN&
- 1. ES语法的getter和setter在开始了解 Vue 的数据响应式原理前应该先搞清楚 ES语法 中的 getter 和 setter
- 本文实例讲述了C#简单访问SQLite数据库的方法。分享给大家供大家参考,具体如下:下载最新版SQLite(http://www.sqlit
- 这篇文章主要介绍了Python partial函数原理及用法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值
- 用法本脚本用于批量扫描端口 1.在同目录下创建输入文件,属性inputFile为输入文件名2.属性th为线程数3.属性port为探测的目标端
- 简介滚动条小部件用于向下滚顶其他小部件的内容,如列表框,文本和画布,但是,我们也可以为Entry小部件创建水平滚动条,常常被用于实现文本,画
- 在编译 PHP 时,如无特殊需要,一定禁止编译生成 CLI 命令行模式的 PHP 解析支持。可在编译时使用 –disable-CLI。一旦编