Python使用multiprocessing实现一个最简单的分布式作业调度系统
作者:kongxx 发布时间:2022-06-14 07:43:33
标签:python,分布式,调度
mutilprocess像线程一样管理进程,这个是mutilprocess的核心,他与threading很是相像,对多核CPU的利用率会比threading好的多。
介绍
Python的multiprocessing模块不但支持多进程,其中managers子模块还支持把多进程分布到多台机器上。一个服务进程可以作为调度者,将任务分布到其他多个机器的多个进程中,依靠网络通信。
想到这,就在想是不是可以使用此模块来实现一个简单的作业调度系统。
实现
Job
首先创建一个Job类,为了测试简单,只包含一个job id属性
job.py
#!/usr/bin/env python
# -*- coding: utf-8 -*-
class Job:
def __init__(self, job_id):
self.job_id = job_id
Master
Master用来派发作业和显示运行完成的作业信息
master.py
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from Queue import Queue
from multiprocessing.managers import BaseManager
from job import Job
class Master:
def __init__(self):
# 派发出去的作业队列
self.dispatched_job_queue = Queue()
# 完成的作业队列
self.finished_job_queue = Queue()
def get_dispatched_job_queue(self):
return self.dispatched_job_queue
def get_finished_job_queue(self):
return self.finished_job_queue
def start(self):
# 把派发作业队列和完成作业队列注册到网络上
BaseManager.register('get_dispatched_job_queue', callable=self.get_dispatched_job_queue)
BaseManager.register('get_finished_job_queue', callable=self.get_finished_job_queue)
# 监听端口和启动服务
manager = BaseManager(address=('0.0.0.0', 8888), authkey='jobs')
manager.start()
# 使用上面注册的方法获取队列
dispatched_jobs = manager.get_dispatched_job_queue()
finished_jobs = manager.get_finished_job_queue()
# 这里一次派发10个作业,等到10个作业都运行完后,继续再派发10个作业
job_id = 0
while True:
for i in range(0, 10):
job_id = job_id + 1
job = Job(job_id)
print('Dispatch job: %s' % job.job_id)
dispatched_jobs.put(job)
while not dispatched_jobs.empty():
job = finished_jobs.get(60)
print('Finished Job: %s' % job.job_id)
manager.shutdown()
if __name__ == "__main__":
master = Master()
master.start()
Slave
Slave用来运行master派发的作业并将结果返回
slave.py
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import time
from Queue import Queue
from multiprocessing.managers import BaseManager
from job import Job
class Slave:
def __init__(self):
# 派发出去的作业队列
self.dispatched_job_queue = Queue()
# 完成的作业队列
self.finished_job_queue = Queue()
def start(self):
# 把派发作业队列和完成作业队列注册到网络上
BaseManager.register('get_dispatched_job_queue')
BaseManager.register('get_finished_job_queue')
# 连接master
server = '127.0.0.1'
print('Connect to server %s...' % server)
manager = BaseManager(address=(server, 8888), authkey='jobs')
manager.connect()
# 使用上面注册的方法获取队列
dispatched_jobs = manager.get_dispatched_job_queue()
finished_jobs = manager.get_finished_job_queue()
# 运行作业并返回结果,这里只是模拟作业运行,所以返回的是接收到的作业
while True:
job = dispatched_jobs.get(timeout=1)
print('Run job: %s ' % job.job_id)
time.sleep(1)
finished_jobs.put(job)
if __name__ == "__main__":
slave = Slave()
slave.start()
测试
分别打开三个linux终端,第一个终端运行master,第二个和第三个终端用了运行slave,运行结果如下
master
$ python master.py
Dispatch job: 1
Dispatch job: 2
Dispatch job: 3
Dispatch job: 4
Dispatch job: 5
Dispatch job: 6
Dispatch job: 7
Dispatch job: 8
Dispatch job: 9
Dispatch job: 10
Finished Job: 1
Finished Job: 2
Finished Job: 3
Finished Job: 4
Finished Job: 5
Finished Job: 6
Finished Job: 7
Finished Job: 8
Finished Job: 9
Dispatch job: 11
Dispatch job: 12
Dispatch job: 13
Dispatch job: 14
Dispatch job: 15
Dispatch job: 16
Dispatch job: 17
Dispatch job: 18
Dispatch job: 19
Dispatch job: 20
Finished Job: 10
Finished Job: 11
Finished Job: 12
Finished Job: 13
Finished Job: 14
Finished Job: 15
Finished Job: 16
Finished Job: 17
Finished Job: 18
Dispatch job: 21
Dispatch job: 22
Dispatch job: 23
Dispatch job: 24
Dispatch job: 25
Dispatch job: 26
Dispatch job: 27
Dispatch job: 28
Dispatch job: 29
Dispatch job: 30
slave1
$ python slave.py
Connect to server 127.0.0.1...
Run job: 1
Run job: 2
Run job: 3
Run job: 5
Run job: 7
Run job: 9
Run job: 11
Run job: 13
Run job: 15
Run job: 17
Run job: 19
Run job: 21
Run job: 23
slave2
$ python slave.py
Connect to server 127.0.0.1...
Run job: 4
Run job: 6
Run job: 8
Run job: 10
Run job: 12
Run job: 14
Run job: 16
Run job: 18
Run job: 20
Run job: 22
Run job: 24
以上内容是小编给大家介绍的Python使用multiprocessing实现一个最简单的分布式作业调度系统,希望对大家有所帮助!


猜你喜欢
- 引言python中的模块、库、包有什么区别?module:一个 .py 文件就是个 modulelib:抽象概念,和另外两个不是一类,只要你
- HTTPX是Python3的功能齐全的HTTP客户端,它提供同步和异步API,并支持HTTP/1.1和HTTP/2安装pip install
- 最近在代码评审的过程,发现挺多错误使用eval导致代码注入的问题,比较典型的就是把eval当解析dict使用,有的就是简单的使用eval,有
- 前言 大家周末好,今天给大家带来的是Python当中生成器和迭代器的使用。我当初第一次学到迭代器和生成器的时候,并没有太在意,只是觉得这是一
- 上期回顾上一次的图像清晰度评价没有成功,主要的原因是那几张图像清晰度评价函数都实际都采用了梯度求解,不同的场景灰度的明暗不同,梯度可能会很大
- 初识OpenCVOpenCV是一个开源的,跨平台的计算机视觉库,它采用优化的C/C++代码编写,能够充分利用多核处理器的优势,提供了Pyth
- Jenkins定时构建时间设置Jenkins时区设置为北京时间打开 【系统管理】->【脚本命令行】运行下面的命令System.setP
- 记录了mysql 8.0.12 的安装配置方法,分享给大家。一、安装1.从网上下载MySQL8.0.12版本,下载地址2. 下载完成后解压我
- IIS上设置301 跳转相信大家都会,只要在网站-属性-主目录里 选择重定向URL就行了,这样整站就跳转到目标站点了,但是有个问
- 本文实例为大家分享了JS实现倒计时图文效果的具体代码,供大家参考,具体内容如下<body><img src="i
- 什么是特征金字塔很多文章里面写道特征金字塔这个结构,其实这个结构Very-Easy目标检测任务和语义分割任务里面常常需要检测小目标,但是小目
- Python标准库中的BaseHTTPServer模块实现了一个基础的HTTP服务器基类和HTTP请求处理类。这在文章python探索之Ba
- 按需导入:安装插件首先需要引入额外的插件:前**vite-plugin-components已重命名为unplugin-vue-compon
- 本文实例为大家分享了Python Web框架Tornado运行和部署的详细内容,供大家参考,具体内容如下一、运行和部署因为Tornado内置
- 本文实例讲述了Python高级编程之继承问题。分享给大家供大家参考,具体如下:多继承问题1.单独调用父类: 一个子类同时继承自多个父类,又称
- 前言本文主要给大家介绍了关于python中用Future对象回调别的函数的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的
- Django是一个开放源代码的Web应用框架,由Python写成。采用了MTV的框架模式,即模型M,视图V和模版T。它最初是被开发来用于管理
- 一、介绍argparse 模块可以让人轻松编写用户友好的命令行接口。程序定义它需要的参数,然后 argparse 将弄清如何从 sys.ar
- 一、协程官方描述;协程是子例程的更一般形式。 子例程可以在某一点进入并在另一点退出。 协程则可以在许多不同的点上进入、退出和恢复。 它们可通
- 通信信息包是发送至MySQL服务器的单个SQL语句,或发送至客户端的单一行。在MySQL 5.1服务器和客户端之间最大能发送的可能信息包为1