关于Keras Dense层整理
作者:姚贤贤 发布时间:2022-03-02 17:04:15
我就废话不多说了,大家还是直接看代码吧!
'''
Created on 2018-4-4
'''
keras.layers.core.Dense(
units, #代表该层的输出维度
activation=None, #激活函数.但是默认 liner
use_bias=True, #是否使用b
kernel_initializer='glorot_uniform', #初始化w权重,keras/initializers.py
bias_initializer='zeros', #初始化b权重
kernel_regularizer=None, #施加在权重w上的正则项,keras/regularizer.py
bias_regularizer=None, #施加在偏置向量b上的正则项
activity_regularizer=None, #施加在输出上的正则项
kernel_constraint=None, #施加在权重w上的约束项
bias_constraint=None #施加在偏置b上的约束项
)
# 所实现的运算是output = activation(dot(input, kernel)+bias)
# model.add(Dense(units=64, activation='relu', input_dim=784))
# keras初始化所有激活函数,activation:
# keras\activations.py
# keras\backend\cntk_backend.py
# import cntk as C
# 1.softmax:
# 对输入数据的最后一维进行softmax,一般用在输出层;
# ndim == 2,K.softmax(x),其实调用的是cntk,是一个模块;
# ndim >= 2,e = K.exp(x - K.max(x)),s = K.sum(e),return e / s
# 2.elu
# K.elu(x)
# 3.selu: 可伸缩的指数线性单元
# alpha = 1.6732632423543772848170429916717
# scale = 1.0507009873554804934193349852946
# return scale * K.elu(x, alpha)
# 4.softplus
# C.softplus(x)
# 5.softsign
# return x / (1 + C.abs(x))
# 6.relu
# def relu(x, alpha=0., max_value=None):
# if alpha != 0.:
# negative_part = C.relu(-x)
# x = C.relu(x)
# if max_value is not None:
# x = C.clip(x, 0.0, max_value)
# if alpha != 0.:
# x -= alpha * negative_part
# return x
# 7.tanh
# return C.tanh(x)
# 8.sigmoid
# return C.sigmoid(x)
# 9.hard_sigmoid
# x = (0.2 * x) + 0.5
# x = C.clip(x, 0.0, 1.0)
# return x
# 10.linear
# return x
# keras初始化所有方法,initializer:
# Zeros
# Ones
# Constant(固定一个值)
# RandomNormal(正态分布)
# RandomUniform(均匀分布)
# TruncatedNormal(截尾高斯分布,神经网络权重和滤波器的推荐初始化方法)
# VarianceScaling(该初始化方法能够自适应目标张量的shape)
# Orthogonal(随机正交矩阵初始化)
# Identiy(单位矩阵初始化,仅适用于2D方阵)
# lecun_uniform(LeCun均匀分布初始化)
# lecun_normal(LeCun正态分布初始化)
# glorot_normal(Glorot正态分布初始化)
# glorot_uniform(Glorot均匀分布初始化)
# he_normal(He正态分布初始化)
# he_uniform(He均匀分布初始化,Keras中文文档写错了)
# keras正则化,regularizer:
# import backend as K
# L1: regularization += K.sum(self.l1 * K.abs(x))
# L2: regularization += K.sum(self.l2 * K.square(x))
补充知识:keras.layers.Dense()方法及其参数
一、Dense层
keras.layers.Dense(units,
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None)
二、参数
units: 神经元节点数数,鸡输出空间维度。
activation: 激活函数,若不指定,则不使用激活函数 (即线性激活: a(x) = x)。
use_bias: 布尔值,该层是否使用偏置向量。
kernel_initializer: kernel 权值矩阵的初始化器
bias_initializer: 偏置向量的初始化器
kernel_regularizer: 运用到 kernel 权值矩阵的正则化函数
bias_regularizer: 运用到偏置向的的正则化函数
activity_regularizer: 运用到层的输出的正则化函数 (它的 “activation”)。
kernel_constraint: 运用到 kernel 权值矩阵的约束函数
bias_constraint: 运用到偏置向量的约束函数
三、示例
例1:
from keras.layers import Dense
# 作为 Sequential 模型的第一层
model = Sequential()
model.add(Dense(32, input_shape=(16,)))
# 现在模型就会以尺寸为 (*, 16) 的数组作为输入,
# 其输出数组的尺寸为 (*, 32)
# 在第一层之后,你就不再需要指定输入的尺寸了:
model.add(Dense(32))
注意在Sequential模型的第一层要定义Dense层的形状,此处定义为input_shape=(16,)
例2:
from keras.layers import Dense
model = Sequential()
model.add(Dense(512, activation= 'sigmoid', input_dim= 2, use_bias= True))
这里定义了一个有512个神经元节点,使用sigmoid激活函数的神经层,此时输入形状参数为input_dim,注意它与input_shape参数的区别。
input_shape:即张量的形状,从前往后对应由外向内的维度
例
[[1],[2],[3]] 这个张量的shape为(3,1)
[[[1,2],[3,4]],[[5,6],[7,8]],[[9,10],[11,12]]]这个张量的shape为(3,2,2),
[1,2,3,4]这个张量的shape为(4,)
input_dim:代表张量的维度,之前3个例子的input_dim分别为2,3,1。
常见的一种用法:只提供了input_dim=32,说明输入是一个32维的向量,相当于一个一阶、拥有32个元素的张量,它的shape就是(32,)。因此,input_shape=(32, )
四、总结
本文对Dense()方法及其参数做了详细的介绍,并对其用法进行了大概的讲解,有什么问题可以评论区留言或者联系我,我会及时解答。希望能给大家一个参考,也希望大家多多支持脚本之家。
来源:https://blog.csdn.net/u011311291/article/details/79820073


猜你喜欢
- 第一步,建立一个CPP的DLL工程,然后写如下代码,生成DLL#include <stdio.h> &nb
- Reflect对象是一个全局的普通的对象。Reflect的原型就是Object.我们首先来验证下 看看Reflect的原型是否是Object
- 前言:今天要总结的是如何用程序来实现短信发送功能。但是呢,可能需要我们调用一些api接口,我会详细介绍。都是自己学到的,害怕忘记,所以要总结
- driver.get("url")等到页面全部加载渲染完成后才会执行后续的脚本。在执行脚本时,driver.get(&q
- var sss=(String.fromCharCode(127)); var xmlhttp =
- JAN-1(January) FEB-2(February) MAR-3(March)APR-4(April) MAY-5(Ma
- 废话不多说了,直接给大家贴代码了,具体代码如下所示:jquery读取xml文件 <!DOCTYPE html PUBLIC "
- 因此,我们主要解决的思路是效验session ID的有效性. 以下为引用的内容: <?php if(!isset($_SESSION[
- 本文实例讲述了Python常用模块之requests模块用法。分享给大家供大家参考,具体如下:一. GET请求1.访问一个页面import
- 以下是它们的共同点: 1. 关于左右表的概念。左表指的是在SQL语句中排在left join左边的表,右表指的是排在left join右边的
- Python upper()方法Python 字符串描述Python upper() 方法将字符串中的小写字母转为大写字母。语法upper(
- IE的特殊性 IE的DOM元素属性与Firefox, Opera, Safari有些不同。在IE中,我们可以给DOM添加任意自定
- 最近在工作中遇到了一个小问题,如果要将字符串型的数据转换成dict类型,我第一时间就想到了使用json函数。但是里面出现了一些问题1、通过j
- 在命令行输入以下代码:pythonimport cv2cv2.__version__来源:https://blog.csdn.net/dlh
- 一、分析网页网站的页面是 JavaScript 渲染而成的,我们所看到的内容都是网页加载后又执行了JavaScript代码之后才呈现出来的,
- bs4的安装要使用BeautifulSoup4需要先安装lxml,再安 * s4pip install lxmlpip install bs4
- sqlserver2008不支持关键字limit ,所以它的分页sql查询语句将不能用MySQL的方式进行,幸好sqlserver2008提
- 首先安装pip install ruamel.yaml用于修改yaml文件#coding:utf-8from ruamel import y
- 之前写了一个matlab的,越用越觉得麻烦,如果不同数据集要改类别数目,而且运行速度慢。所以重新写了一个Python的,直接读取xml文件夹
- 根据"客服果果"的"十几行的超简日历组件"http://bbs.51js.com/viewthrea