Python实现的径向基(RBF)神经网络示例
作者:罗兵 发布时间:2022-03-06 23:44:35
标签:Python,神经网络
本文实例讲述了Python实现的径向基(RBF)神经网络。分享给大家供大家参考,具体如下:
from numpy import array, append, vstack, transpose, reshape, \
dot, true_divide, mean, exp, sqrt, log, \
loadtxt, savetxt, zeros, frombuffer
from numpy.linalg import norm, lstsq
from multiprocessing import Process, Array
from random import sample
from time import time
from sys import stdout
from ctypes import c_double
from h5py import File
def metrics(a, b):
return norm(a - b)
def gaussian (x, mu, sigma):
return exp(- metrics(mu, x)**2 / (2 * sigma**2))
def multiQuadric (x, mu, sigma):
return pow(metrics(mu,x)**2 + sigma**2, 0.5)
def invMultiQuadric (x, mu, sigma):
return pow(metrics(mu,x)**2 + sigma**2, -0.5)
def plateSpine (x,mu):
r = metrics(mu,x)
return (r**2) * log(r)
class Rbf:
def __init__(self, prefix = 'rbf', workers = 4, extra_neurons = 0, from_files = None):
self.prefix = prefix
self.workers = workers
self.extra_neurons = extra_neurons
# Import partial model
if from_files is not None:
w_handle = self.w_handle = File(from_files['w'], 'r')
mu_handle = self.mu_handle = File(from_files['mu'], 'r')
sigma_handle = self.sigma_handle = File(from_files['sigma'], 'r')
self.w = w_handle['w']
self.mu = mu_handle['mu']
self.sigmas = sigma_handle['sigmas']
self.neurons = self.sigmas.shape[0]
def _calculate_error(self, y):
self.error = mean(abs(self.os - y))
self.relative_error = true_divide(self.error, mean(y))
def _generate_mu(self, x):
n = self.n
extra_neurons = self.extra_neurons
# TODO: Make reusable
mu_clusters = loadtxt('clusters100.txt', delimiter='\t')
mu_indices = sample(range(n), extra_neurons)
mu_new = x[mu_indices, :]
mu = vstack((mu_clusters, mu_new))
return mu
def _calculate_sigmas(self):
neurons = self.neurons
mu = self.mu
sigmas = zeros((neurons, ))
for i in xrange(neurons):
dists = [0 for _ in xrange(neurons)]
for j in xrange(neurons):
if i != j:
dists[j] = metrics(mu[i], mu[j])
sigmas[i] = mean(dists)* 2
# max(dists) / sqrt(neurons * 2))
return sigmas
def _calculate_phi(self, x):
C = self.workers
neurons = self.neurons
mu = self.mu
sigmas = self.sigmas
phi = self.phi = None
n = self.n
def heavy_lifting(c, phi):
s = jobs[c][1] - jobs[c][0]
for k, i in enumerate(xrange(jobs[c][0], jobs[c][1])):
for j in xrange(neurons):
# phi[i, j] = metrics(x[i,:], mu[j])**3)
# phi[i, j] = plateSpine(x[i,:], mu[j]))
# phi[i, j] = invMultiQuadric(x[i,:], mu[j], sigmas[j]))
phi[i, j] = multiQuadric(x[i,:], mu[j], sigmas[j])
# phi[i, j] = gaussian(x[i,:], mu[j], sigmas[j]))
if k % 1000 == 0:
percent = true_divide(k, s)*100
print(c, ': {:2.2f}%'.format(percent))
print(c, ': Done')
# distributing the work between 4 workers
shared_array = Array(c_double, n * neurons)
phi = frombuffer(shared_array.get_obj())
phi = phi.reshape((n, neurons))
jobs = []
workers = []
p = n / C
m = n % C
for c in range(C):
jobs.append((c*p, (c+1)*p + (m if c == C-1 else 0)))
worker = Process(target = heavy_lifting, args = (c, phi))
workers.append(worker)
worker.start()
for worker in workers:
worker.join()
return phi
def _do_algebra(self, y):
phi = self.phi
w = lstsq(phi, y)[0]
os = dot(w, transpose(phi))
return w, os
# Saving to HDF5
os_h5 = os_handle.create_dataset('os', data = os)
def train(self, x, y):
self.n = x.shape[0]
## Initialize HDF5 caches
prefix = self.prefix
postfix = str(self.n) + '-' + str(self.extra_neurons) + '.hdf5'
name_template = prefix + '-{}-' + postfix
phi_handle = self.phi_handle = File(name_template.format('phi'), 'w')
os_handle = self.w_handle = File(name_template.format('os'), 'w')
w_handle = self.w_handle = File(name_template.format('w'), 'w')
mu_handle = self.mu_handle = File(name_template.format('mu'), 'w')
sigma_handle = self.sigma_handle = File(name_template.format('sigma'), 'w')
## Mu generation
mu = self.mu = self._generate_mu(x)
self.neurons = mu.shape[0]
print('({} neurons)'.format(self.neurons))
# Save to HDF5
mu_h5 = mu_handle.create_dataset('mu', data = mu)
## Sigma calculation
print('Calculating Sigma...')
sigmas = self.sigmas = self._calculate_sigmas()
# Save to HDF5
sigmas_h5 = sigma_handle.create_dataset('sigmas', data = sigmas)
print('Done')
## Phi calculation
print('Calculating Phi...')
phi = self.phi = self._calculate_phi(x)
print('Done')
# Saving to HDF5
print('Serializing...')
phi_h5 = phi_handle.create_dataset('phi', data = phi)
del phi
self.phi = phi_h5
print('Done')
## Algebra
print('Doing final algebra...')
w, os = self.w, _ = self._do_algebra(y)
# Saving to HDF5
w_h5 = w_handle.create_dataset('w', data = w)
os_h5 = os_handle.create_dataset('os', data = os)
## Calculate error
self._calculate_error(y)
print('Done')
def predict(self, test_data):
mu = self.mu = self.mu.value
sigmas = self.sigmas = self.sigmas.value
w = self.w = self.w.value
print('Calculating phi for test data...')
phi = self._calculate_phi(test_data)
os = dot(w, transpose(phi))
savetxt('iok3834.txt', os, delimiter='\n')
return os
@property
def summary(self):
return '\n'.join( \
['-----------------',
'Training set size: {}'.format(self.n),
'Hidden layer size: {}'.format(self.neurons),
'-----------------',
'Absolute error : {:02.2f}'.format(self.error),
'Relative error : {:02.2f}%'.format(self.relative_error * 100)])
def predict(test_data):
mu = File('rbf-mu-212243-2400.hdf5', 'r')['mu'].value
sigmas = File('rbf-sigma-212243-2400.hdf5', 'r')['sigmas'].value
w = File('rbf-w-212243-2400.hdf5', 'r')['w'].value
n = test_data.shape[0]
neur = mu.shape[0]
mu = transpose(mu)
mu.reshape((n, neur))
phi = zeros((n, neur))
for i in range(n):
for j in range(neur):
phi[i, j] = multiQuadric(test_data[i,:], mu[j], sigmas[j])
os = dot(w, transpose(phi))
savetxt('iok3834.txt', os, delimiter='\n')
return os
希望本文所述对大家Python程序设计有所帮助。
来源:http://www.cnblogs.com/hhh5460/p/4319654.html


猜你喜欢
- 这篇文章主要介绍了Python3打包exe代码2种方法实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,
- 目录什么是 assert 断言断言和异常的使用场景使用断言的几个原则建议不使用断言的情况:总结什么是 assert 断言Assert sta
- llama Index是什么《零开始带你入门人工智能系列》第一篇:还用什么chatpdf,让llama Index 帮你训练pdf。Llam
- 前言在前几天的文章中我们讲解了如何从Word表格中提取指定数据并按照格式保存到Excel中,今天我们将再次以一位读者提出的真实需求来讲解如何
- 从句法上看,协程与生成器类似,都是定义体中包含 yield 关键字的函数。可是,在协程中, yield 通常出现在表达式的右边(例如, da
- 这篇论坛文章(赛迪网技术社区)根据网友的个人实践扼要的讲解了将MySQL 5.0下的数据导入到MySQL 3.23中的具体方法及步骤,详细内
- 1.什么是连接查询:在实际开发中大部分都不是从一张表中查询数据,一般都是多张表联合查询取得结果。实际开发中,一般一个业务对应多张表。比如:学
- 刚开始进入页面,当滚动向下超过原屏的时候。右侧会出现一个“返回顶部”的按钮。这个按钮会跟这网页一起向上向下,当滚动到顶部的时候。“返回顶部”
- 我们知道,Diango 接收的 HTTP 请求信息里带有 Cookie 信息。Cookie的作用是为了识别当前用户的身份,通过以下例子来说明
- 研究了几天Adodb.stream和XMLHTTP的应用,找了不少很有趣的教程,下面的代码是将一个远程的页面,图片地址保存到本地的实例。将代
- 本文实例讲述了PHP获取客户端及服务器端IP的封装类。分享给大家供大家参考,具体如下:客户端IP相关的变量:1. $_SERVER['
- 创建python虚拟环境virtualenv、virtualenvwrapper1,为什么需要搭建虚拟环境由于当机器上两个项目依赖于相同包的
- 下面说说主要实现思路: 1、存取图片 (1)、将图片文件转换为二进制并直接存进sql server //UploadHelper.cs //
- 前言在开发中一些需求需要通过程序操作excel文档,例如导出excel、导入excel、向excel文档中插入图片、表格和图表等信息,使用E
- 本文实例讲述了Python使用ConfigParser模块操作配置文件的方法。分享给大家供大家参考,具体如下:一、简介用于生成和修改常见配置
- 本文为大家分享了pygame游戏之旅的第10篇,供大家参考,具体内容如下通过获取鼠标的位置然后进行高亮显示:mouse =pygame.mo
- Python算法的分类对葡萄酒数据集进行测试,由于数据集是多分类且数据的样本分布不平衡,所以直接对数据测试,效果不理想。所以使用SMOTE过
- 用过jQuery的朋友一定对jQuery中方法的链式调用印象深刻,最近发布的YUI3也支持了方法的链式调用。这是一个非常不错的语法特性,能让
- 一、问题描述在实习的时候,需要将两个表格的内容进行匹配分类,比如两个不同的工程项目针对的对象都是A,那么就需要将这两个工程项目归类到A当中,
- Microsoft SQL Server Management Studio是SQL SERVER的客户端工具,相信大家都知道。我不知道大伙