使用Fabric自动化部署Django项目的实现
作者:削微寒 发布时间:2022-09-05 22:00:33
文中涉及的示例代码,已同步更新到HelloGitHub-Team 仓库
在上一篇教程中,我们通过手工方式将代码部署到了服务器。整个过程涉及到十几条命令,输了 N 个字符。一旦我们本地的代码有更新,整个过程又得重复来一遍,这将变得非常繁琐。
使用 Fabric 可以在服务器中自动执行命令。因为整个代码部署过程都是相同的,只要我们用 Fabric 写好部署脚本,以后就可以通过运行脚本自动完成部署了。
首先在本地安装 Fabric:
$ pipenv install fabric --dev
因为 Fabric 只需在本地使用,因此使用 --dev 选项,让 Pipenv 将 Fabric 依赖写到 dev-packages 配置下,线上环境就不会安装 Fabric。
部署过程回顾
在写 Fabric 脚本之前,先来回顾一下当我们在本地开发环境下更新了代码后,在服务器上的整个部署过程。
远程连接服务器。
进入项目根目录,从远程仓库拉取最新的代码。
如果项目引入了新的依赖,需要执行 pipenv install --deploy --ignore-pipfile 安装最新依赖。
如果修改或新增了项目静态文件,需要执行 pipenv run python manage.py collectstatic 收集静态文件。
如果数据库发生了变化,需要执行 pipenv run python manage.py migrate 迁移数据库。
重启 Nginx 和 Gunicorn 使改动生效。
整个过程就是这样,把每一步操作翻译成 Fabric 对应的脚本代码,这样一个自动化部署脚本就完成了。
完善项目配置
分离 settings 文件
为了安全,线上环境我们将 debug 改为了 False,但开发环境要改为 True,改来改去将很麻烦。此外,django 的 SECRET_KEY 是很私密的配置,django 的很多安全机制都依赖它,如果不慎泄露,网站将面临巨大安全风险,像我们现在这样直接写在配置文件中,万一不小心公开了源代码,SECRET_KEY 就会直接泄露,好的实践是将这个值写入环境变量,通过从环境变量取这个值。
解决以上问题的一个方案就是拆分 settings.py 文件,不同环境对应不同的 settings 文件,django 在启动时会从环境变量中读取 DJANGO_SETTINGS_MODULE 的值,以这个值指定的文件作为应用的最终配置。
我们来把 settings.py 拆分,首先在 blogproject 目录下新建一个 Python 包,名为 settings,然后创建一个 common.py,用于存放通用配置,local.py 存放开发环境的配置,production.py 存放线上环境的配置:
blogproject\
settings\
__init__.py
local.py
production.py
settings.py
将 settings.py 文件中的内容全部复制到 common.py 里,并将 SECRET_KEY、DEBUG、ALLOWED_HOSTS 这些配置移到 local.py 和 production.py 中(common.py 中这些项可以删除)。
开发环境的配置 local.py 内容如下:
from .common import *
SECRET_KEY = 'development-secret-key'
DEBUG = True
ALLOWED_HOSTS = ['*']
线上环境的配置:
from .common import *
SECRET_KEY = os.environ['DJANGO_SECRET_KEY']
DEBUG = False
ALLOWED_HOSTS = ['hellodjango-blog-tutorial.zmrenwu.com']
注意这里我们在顶部使用 from .common import * 将全部配置从 common.py 导入,然后根据环境的不同,在下面进行配置覆盖。
线上环境和开发环境不同的是,为了安全,DEBUG 模式被关闭,SECRET_KEY 从环境变量获取,ALLOWED_HOSTS 设置了允许的 HTTP HOSTS(具体作用见后面的讲解)。
以上操作完成后,一定记得删除 settings.py
。
现在我们有了两套配置,一套是 local.py,一套是 production.py,那么启动项目时,django 怎么知道我们使用了哪套配置呢?答案是在运行 manage.py 脚本时,django 默认帮我们指定了。在使用 python manage.py 执行命令时,django 可以接收一个 --settings-module 的参数,用于指定执行命令时,项目使用的配置文件,如果参数未显示指定,django 会从环境变量 DJANGO_SETTINGS_MODULE 里获取。看到 manage.py 的源码:
def main():
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'blogproject.settings')
try:
from django.core.management import execute_from_command_line
except ImportError as exc:
raise ImportError(
"Couldn't import Django. Are you sure it's installed and "
"available on your PYTHONPATH environment variable? Did you "
"forget to activate a virtual environment?"
) from exc
execute_from_command_line(sys.argv)
可以看到这个 main 函数,第一行的 setdefault 为我们设置了环境变量 DJANGO_SETTINGS_MODULE 的值,这句代码的作用是,如果当前环境中 DJANGO_SETTINGS_MODULE 的值没有被设置,就将其设置为 blogproject.settings,所以我们使用 python manage.py 执行命令时,django 默认为我们使用了 settings.py 这个配置。
所以我们可以通过设置环境变量,来指定 django 使用的配置文件。
对于 manage.py,通常在开发环境下执行,因此将这里的 DJANGO_SETTINGS_MODULE 的值改为 blogproject.settings.local,这样运行开发服务器时 django 会加载 blogproject/settings/local.py 这个配置文件。
另外看到 wsgi.py 文件中,这个文件中有一个 application,是在线上环境时 Gunicorn 加载运行的,将这里面的 DJANGO_SETTINGS_MODULE 改为 blogproject.settings.production
这样,在使用 manage.py 执行命令时,加载的是 local.py 的设置,而使用 gunicorn 运行项目时,使用的是 production.py 的设置。
修改 BASE_DIR 配置项
还有需要注意的一点,看到存放通用配置的 common.py 文件,里面有一个配置项为:
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
这个 BASE_DIR 指向项目根目录,其获取方式为根据所在的配置文件向上回溯,找到项目根目录。因为此前的目录结构为 HelloDjango-blog-tutorial/blogproject/settings.py,因此向上回溯 2 层就到达项目根目录。而现在目录结构变为 HelloDjango-blog-tutorial/blogproject/settings/common.py,需向上回溯 3 层才到达项目根目录,因此需将 BASE_DIR 进行一个简单修改,修改如下:
BASE_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
即再在外面包一层 os.path.dirname,再向上回退一层,到达项目根目录。
设置 Supervisor 环境变量
此外,由于线上环境配置中的 secret_key 从环境变量获取,因此我们改一下 supervisor 的配置,将环境变量导入,打开 supervisor 的配置文件 ~/etc/supervisor/conf.d/hellodjango-blog-tutorial.ini,添加环境变量的配置语句:
environment=DJANGO_SECRET_KEY=2pe8eih8oah2_2z1=7f84bzme7^bwuto7y&f(#@rgd9ux9mp-3
因为此前可能将代码传过公开的代码仓库,所以最好把线上使用的 SECRET_KEY换一下。这个网站可以自动生成 SECRET_KEY:Django Secret Key Generator。
保存配置,然后要执行 update 命令更新配置。
$ supervisorctl -c ~/etc/supervisord.conf update
编写 Fabric 脚本
一切准备工作均已就绪,现在就来使用 Fabric 编写自动部署脚本。
Fabric 脚本通常位于 fabfile.py 文件里,因此先在项目根目录下建一个 fabfile.py 文件。
根据上述过程编写的脚本代码如下:
from fabric import task
from invoke import Responder
from ._credentials import github_username, github_password
def _get_github_auth_responders():
"""
返回 GitHub 用户名密码自动填充器
"""
username_responder = Responder(
pattern="Username for 'https://github.com':",
response='{}\n'.format(github_username)
)
password_responder = Responder(
pattern="Password for 'https://{}@github.com':".format(github_username),
response='{}\n'.format(github_password)
)
return [username_responder, password_responder]
@task()
def deploy(c):
supervisor_conf_path = '~/etc/'
supervisor_program_name = 'hellodjango-blog-tutorial'
project_root_path = '~/apps/HelloDjango-blog-tutorial/'
# 先停止应用
with c.cd(supervisor_conf_path):
cmd = 'supervisorctl stop {}'.format(supervisor_program_name)
c.run(cmd)
# 进入项目根目录,从 Git 拉取最新代码
with c.cd(project_root_path):
cmd = 'git pull'
responders = _get_github_auth_responders()
c.run(cmd, watchers=responders)
# 安装依赖,迁移数据库,收集静态文件
with c.cd(project_root_path):
c.run('pipenv install --deploy --ignore-pipfile')
c.run('pipenv run python manage.py migrate')
c.run('pipenv run python collectstatic --noinput')
# 重新启动应用
with c.cd(supervisor_conf_path):
cmd = 'supervisorctl start {}'.format(supervisor_program_name)
c.run(cmd)
来分析一下部署代码。
deploy 函数为部署过程的入口,加上 task 装饰器将其标注为一个 fabric 任务。
然后定义了一些项目相关的变量,主要是应用相关代码和配置所在服务器的路径。
deploy 函数被调用时会传入一个 c 参数,这个参数的值是 Fabric 在连接服务器时创建的 ssh 客户端实例,使用这个实例可以在服务器上运行相关命令。
接着就是执行一系列部署命令了,进入某个目录使用 ssh 客户端实例的 cd 方法,运行命令使用 run 方法。
需要注意的是,每次 ssh 客户端实例执行新的命令是无状态的,即每次都会在服务器根目录执行新的命令,而不是在上一次执行的命令所在目录,所以要在同一个目录下连续执行多条命令,需要使用 with c.cd 上下文管理器。
最后,如果服务器没有加入代码仓库的信任列表,运行 git pull 一般会要求输入密码。我们代码托管使用了 GitHub,所以写了一个 GitHub 账户密码响应器,一旦 Fabric 检测到需要输入 GitHub 账户密码,就会调用这个响应器,自动填写账户密码。
由于响应器从 _credentials.py 模块导入敏感信息,因此在 fabfile.py 同级目录新建一个 _credentials.py文件,写上 GitHub 的用户名和密码:
github_username = your-github-username
github_password = your-github-password
当然,这个文件包含账户密码等敏感信息,所以一定记得将这个文件加入 .gitignore 文件,将其排除在版本控制系统之外,别一不小心提交了公开仓库,导致个人 GitHub 账户泄露。
执行 Fabric 自动部署脚本
进入 fabfile.py 文件所在的目录,用 fab 命令运行这个脚本文件(将 server_ip 换为你线上服务器的 ip 地址):
fab -H server_ip --prompt-for-login-password -p deploy
这时 Fabric 会自动检测到 fabfile.py 脚本中的 deploy 函数并运行,输入服务器登录密码后回车,然后你会看到命令行输出了一系列字符串,最后看到部署完毕的消息。
如果脚本运行中出错,检查一下命令行输出的错误信息,修复问题后重新运行脚本即可。以后当你在本地开发完相关功能后,只需要执行这一个脚本文件,就可以自动把最新代码部署到服务器了。
来源:https://www.cnblogs.com/xueweihan/p/11593800.html


猜你喜欢
- 同事在准备新老系统的切换,清空一个表的时候往往发现这个表的主键被另一个表用做外键,而系统里有太多层次的引用.所以清起来相当麻烦用下面这个脚本
- 前言Go 数组的长度不可改变,在特定场景中这样的集合就不太适用,Go中提供了一种灵活,功能强悍的内置类型切片("动态数组"
- python正则表达式括号python中re库函数的简单用法re.findall(pattern,string)匹配所有符合正则表达式的字符
- 本文实例为大家分享了pygame实现弹力球及其变速效果的具体代码,供大家参考,具体内容如下期望:1.球体接触到框体后反弹2.设置速度按键,按
- 我一直是使用mysql这个数据库软件,它工作比较稳定,效率也很高。在遇到严重性能问题时,一般都有这么几种可能:1、索引没有建好;2、sql写
- 前言Blender 并不是唯一一款允许你为场景编程和自动化任务的3D软件; 随着每一个新版本的推出,Blender 正逐渐成为一个可靠的 C
- Django View官方文档一个视图函数(类),简称视图,是一个简单的 Python 函数(类),它接受Web请求并且返回Web响应。响应
- 在写论文时,如果是菜鸟级别,可能不会花太多时间去学latex,直接用word去写,但是这有一个问题,当我们用其他工具画完实验彩色图时,放到w
- 前言本文主要给大家介绍了关于Innodb中mysql快速删除2T的大表的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介
- using System; using System.Data; using System.Configuration; using Sys
- window.opener.location.reload()刷新父窗口window.opener.location.reload() 与
- 1. 引言本文是数独游戏问题求解的第二篇,在前文中我们使用回溯算法实现了最简单版本的数独游戏求解方案。本文主要在前文解决方案的基础上,来思考
- 前言:我们想要在爬虫中使用xpath、beautifulsoup、正则表达式,css选择器等来提取想要的数据,但是因为scrapy是一个比较
- 本文主要参考:http://element.eleme.io/#/zh-CN/component/menu在使用elementUI的时候发现
- 装饰器本质上是一个 Python 函数或类,它可以让其他函数或类在不需要做任何代码修改的前提下增加额外功能,装饰器的返回值也是一个函数/类对
- 简介pandas中的DF数据类型可以像数据库表格一样进行groupby操作。通常来说groupby操作可以分为三部分:分割数据,应用变换和和
- 主要讲 except 和 not in 的性能上的区别。 CREATE TABLE tb1(ID int) CREATE TABLE tb2
- 说明:使用mysqldump –all-databases会导出所有库。但如果做主从,从主库dump出数据时,我们是不需要也不想要infor
- PHP屏蔽蜘蛛访问代码代码:常用搜索引擎名与 HTTP_USER_AGENT对应值百度baiduspider谷歌googlebot搜狗sog
- 本文实例讲述了Python数学形态学。分享给大家供大家参考,具体如下:一 原始随机图像1、代码import numpy as npimpor