tensorflow 1.0用CNN进行图像分类
作者:denny402 发布时间:2022-08-17 17:32:29
标签:tensorflow,CNN,图像分类
tensorflow升级到1.0之后,增加了一些高级模块: 如tf.layers, tf.metrics, 和tf.losses,使得代码稍微有些简化。
任务:花卉分类
版本:tensorflow 1.0
数据:flower-photos
花总共有五类,分别放在5个文件夹下。
闲话不多说,直接上代码,希望大家能看懂:)
复制代码
# -*- coding: utf-8 -*-
from skimage import io,transform
import glob
import os
import tensorflow as tf
import numpy as np
import time
path='e:/flower/'
#将所有的图片resize成100*100
w=100
h=100
c=3
#读取图片
def read_img(path):
cate=[path+x for x in os.listdir(path) if os.path.isdir(path+x)]
imgs=[]
labels=[]
for idx,folder in enumerate(cate):
for im in glob.glob(folder+'/*.jpg'):
print('reading the images:%s'%(im))
img=io.imread(im)
img=transform.resize(img,(w,h))
imgs.append(img)
labels.append(idx)
return np.asarray(imgs,np.float32),np.asarray(labels,np.int32)
data,label=read_img(path)
#打乱顺序
num_example=data.shape[0]
arr=np.arange(num_example)
np.random.shuffle(arr)
data=data[arr]
label=label[arr]
#将所有数据分为训练集和验证集
ratio=0.8
s=np.int(num_example*ratio)
x_train=data[:s]
y_train=label[:s]
x_val=data[s:]
y_val=label[s:]
#-----------------构建网络----------------------
#占位符
x=tf.placeholder(tf.float32,shape=[None,w,h,c],name='x')
y_=tf.placeholder(tf.int32,shape=[None,],name='y_')
#第一个卷积层(100——>50)
conv1=tf.layers.conv2d(
inputs=x,
filters=32,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01))
pool1=tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)
#第二个卷积层(50->25)
conv2=tf.layers.conv2d(
inputs=pool1,
filters=64,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01))
pool2=tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)
#第三个卷积层(25->12)
conv3=tf.layers.conv2d(
inputs=pool2,
filters=128,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01))
pool3=tf.layers.max_pooling2d(inputs=conv3, pool_size=[2, 2], strides=2)
#第四个卷积层(12->6)
conv4=tf.layers.conv2d(
inputs=pool3,
filters=128,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01))
pool4=tf.layers.max_pooling2d(inputs=conv4, pool_size=[2, 2], strides=2)
re1 = tf.reshape(pool4, [-1, 6 * 6 * 128])
#全连接层
dense1 = tf.layers.dense(inputs=re1,
units=1024,
activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
kernel_regularizer=tf.contrib.layers.l2_regularizer(0.003))
dense2= tf.layers.dense(inputs=dense1,
units=512,
activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
kernel_regularizer=tf.contrib.layers.l2_regularizer(0.003))
logits= tf.layers.dense(inputs=dense2,
units=5,
activation=None,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
kernel_regularizer=tf.contrib.layers.l2_regularizer(0.003))
#---------------------------网络结束---------------------------
loss=tf.losses.sparse_softmax_cross_entropy(labels=y_,logits=logits)
train_op=tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
correct_prediction = tf.equal(tf.cast(tf.argmax(logits,1),tf.int32), y_)
acc= tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
#定义一个函数,按批次取数据
def minibatches(inputs=None, targets=None, batch_size=None, shuffle=False):
assert len(inputs) == len(targets)
if shuffle:
indices = np.arange(len(inputs))
np.random.shuffle(indices)
for start_idx in range(0, len(inputs) - batch_size + 1, batch_size):
if shuffle:
excerpt = indices[start_idx:start_idx + batch_size]
else:
excerpt = slice(start_idx, start_idx + batch_size)
yield inputs[excerpt], targets[excerpt]
#训练和测试数据,可将n_epoch设置更大一些
n_epoch=10
batch_size=64
sess=tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
for epoch in range(n_epoch):
start_time = time.time()
#training
train_loss, train_acc, n_batch = 0, 0, 0
for x_train_a, y_train_a in minibatches(x_train, y_train, batch_size, shuffle=True):
_,err,ac=sess.run([train_op,loss,acc], feed_dict={x: x_train_a, y_: y_train_a})
train_loss += err; train_acc += ac; n_batch += 1
print(" train loss: %f" % (train_loss/ n_batch))
print(" train acc: %f" % (train_acc/ n_batch))
#validation
val_loss, val_acc, n_batch = 0, 0, 0
for x_val_a, y_val_a in minibatches(x_val, y_val, batch_size, shuffle=False):
err, ac = sess.run([loss,acc], feed_dict={x: x_val_a, y_: y_val_a})
val_loss += err; val_acc += ac; n_batch += 1
print(" validation loss: %f" % (val_loss/ n_batch))
print(" validation acc: %f" % (val_acc/ n_batch))
sess.close()
来源:http://www.cnblogs.com/denny402/p/6931338.html


猜你喜欢
- 本文实例讲述了Windows下安装Django框架的方法。分享给大家供大家参考,具体如下:在idea上运行Python项目时,出现了如下错误
- 一般与页面有关的系统都会有大量的静态文件,包括js、css以及图标图片等,这些文件一般是项目的相对路径,在加载的时候会从本地读取再转发出去。
- 1.元组的概念Python中的元组和列表很相似,元组也是Python语言提供的内置数据结构之一,可以在代码中直接使用。元组和列表就像是一个孪
- Python 三元运算符Python 三元运算符用于根据条件选择两个值之一。它是 if-else 语句的一个缩影,它将两个值之一分配给一个变
- runtime 调度器是个非常有用的东西,关于 runtime 包几个方法:Gosched:让当前线程让出 cpu 以让其它线程运行,它不会
- python的注释方式和C语言、C++、java有所不同python语言中,使用‘#' 来进行注释,其次还有使用 三个引号来进行注释
- 转自http://rookiefly.cn/detail/69作死小能手这两天闲着没事,把自己电脑重装了,然而重装过后配置开发环境踩了一些坑
- json文件格式这是yolov4模型跑出来的检测结果result.json下面是截取的一张图的检测结果{ "frame_id&qu
- TensorFlow提供了一种统一的格式来存储数据,就是TFRecord,它可以统一不同的原始数据格式,并且更加有效地管理不同的属性。TFR
- pyhook下载:http://sourceforge.net/projects/pyhook/files/pyhook/1.5.1/pyh
- 本文讲述了python安装mysql-python的方法。分享给大家供大家参考,具体如下:ubuntu 系统下进行的操作首先安装了pip工具
- pyquery的使用一、pyquery的介绍使用pyquery需要在Web和了解jQuery的基础上,使用该CSS选择器。二、pyquery
- 查询到效率低的 SQL 语句 后,可以通过 EXPLAIN 或者 DESC 命令获取 MySQL 如何执行 SELECT 语句的信息,包括在
- 本文实例讲述了Python利用Scrapy框架爬取豆瓣电影。分享给大家供大家参考,具体如下:1、概念Scrapy是一个为了爬取网站数据,提取
- 安装pygal,可参阅:pip和pygal的安装实例教程基本XY线:import pygalfrom math import cos&quo
- Oracle和mysql的一些简单命令对比 1)SQL> select to_char(sysdate,'yyyy-mm-dd
- 本文实例讲述了Python实现将数据框数据写入mongodb及mysql数据库的方法。分享给大家供大家参考,具体如下:主要内容:1、数据框数
- <%dim conn ’定义一个连接变量 dim&nbs
- 一. torch.squeeze()函数解析1. 官网链接torch.squeeze(),如下图所示:2. torch.squeeze()函
- 首先使用tf.where()将满足条件的数值索引取出来,在numpy中,可以直接用矩阵引用索引将满足条件的数值取出来,但是在tensorfl