python实用代码片段收集贴
作者:junjie 发布时间:2022-02-16 10:01:40
获取一个类的所有子类
def itersubclasses(cls, _seen=None):
"""Generator over all subclasses of a given class in depth first order."""
if not isinstance(cls, type):
raise TypeError(_('itersubclasses must be called with '
'new-style classes, not %.100r') % cls)
_seen = _seen or set()
try:
subs = cls.__subclasses__()
except TypeError: # fails only when cls is type
subs = cls.__subclasses__(cls)
for sub in subs:
if sub not in _seen:
_seen.add(sub)
yield sub
for sub in itersubclasses(sub, _seen):
yield sub
简单的线程配合
import threading
is_done = threading.Event()
consumer = threading.Thread(
target=self.consume_results,
args=(key, self.task, runner.result_queue, is_done))
consumer.start()
self.duration = runner.run(
name, kw.get("context", {}), kw.get("args", {}))
is_done.set()
consumer.join() #主线程堵塞,直到consumer运行结束
多说一点,threading.Event()也可以被替换为threading.Condition(),condition有notify(), wait(), notifyAll()。解释如下:
The wait() method releases the lock, and then blocks until it is awakened by a notify() or notifyAll() call for the same condition variable in another thread. Once awakened, it re-acquires the lock and returns. It is also possible to specify a timeout.
The notify() method wakes up one of the threads waiting for the condition variable, if any are waiting. The notifyAll() method wakes up all threads waiting for the condition variable.
Note: the notify() and notifyAll() methods don't release the lock; this means that the thread or threads awakened will not return from their wait() call immediately, but only when the thread that called notify() or notifyAll() finally relinquishes ownership of the lock.
# Consume one item
cv.acquire()
while not an_item_is_available():
cv.wait()
get_an_available_item()
cv.release()
# Produce one item
cv.acquire()
make_an_item_available()
cv.notify()
cv.release()
计算运行时间
class Timer(object):
def __enter__(self):
self.error = None
self.start = time.time()
return self
def __exit__(self, type, value, tb):
self.finish = time.time()
if type:
self.error = (type, value, tb)
def duration(self):
return self.finish - self.start
with Timer() as timer:
func()
return timer.duration()
元类
__new__()方法接收到的参数依次是:
当前准备创建的类的对象;
类的名字;
类继承的父类集合;
类的方法集合;
class ModelMetaclass(type):
def __new__(cls, name, bases, attrs):
if name=='Model':
return type.__new__(cls, name, bases, attrs)
mappings = dict()
for k, v in attrs.iteritems():
if isinstance(v, Field):
print('Found mapping: %s==>%s' % (k, v))
mappings[k] = v
for k in mappings.iterkeys():
attrs.pop(k)
attrs['__table__'] = name # 假设表名和类名一致
attrs['__mappings__'] = mappings # 保存属性和列的映射关系
return type.__new__(cls, name, bases, attrs)
class Model(dict):
__metaclass__ = ModelMetaclass
def __init__(self, **kw):
super(Model, self).__init__(**kw)
def __getattr__(self, key):
try:
return self[key]
except KeyError:
raise AttributeError(r"'Model' object has no attribute '%s'" % key)
def __setattr__(self, key, value):
self[key] = value
def save(self):
fields = []
params = []
args = []
for k, v in self.__mappings__.iteritems():
fields.append(v.name)
params.append('?')
args.append(getattr(self, k, None))
sql = 'insert into %s (%s) values (%s)' % (self.__table__, ','.join(fields), ','.join(params))
print('SQL: %s' % sql)
print('ARGS: %s' % str(args))
class Field(object):
def __init__(self, name, column_type):
self.name = name
self.column_type = column_type
def __str__(self):
return '<%s:%s>' % (self.__class__.__name__, self.name)
class StringField(Field):
def __init__(self, name):
super(StringField, self).__init__(name, 'varchar(100)')
class IntegerField(Field):
def __init__(self, name):
super(IntegerField, self).__init__(name, 'bigint')
class User(Model):
# 定义类的属性到列的映射:
id = IntegerField('id')
name = StringField('username')
email = StringField('email')
password = StringField('password')
# 创建一个实例:
u = User(id=12345, name='Michael', email='test@orm.org', password='my-pwd')
# 保存到数据库:
u.save()
输出如下:
Found model: User
Found mapping: email ==> <StringField:email>
Found mapping: password ==> <StringField:password>
Found mapping: id ==> <IntegerField:uid>
Found mapping: name ==> <StringField:username>
SQL: insert into User (password,email,username,uid) values (?,?,?,?)
ARGS: ['my-pwd', 'test@orm.org', 'Michael', 12345]
SQLAlchemy简单使用
# 导入:
from sqlalchemy import Column, String, create_engine
from sqlalchemy.orm import sessionmaker
from sqlalchemy.ext.declarative import declarative_base
# 创建对象的基类:
Base = declarative_base()
# 定义User对象:
class User(Base):
# 表的名字:
__tablename__ = 'user'
# 表的结构:
id = Column(String(20), primary_key=True)
name = Column(String(20))
# 初始化数据库连接:
engine = create_engine('mysql+mysqlconnector://root:password@localhost:3306/test') # '数据库类型+数据库驱动名称://用户名:口令@机器地址:端口号/数据库名'
# 创建DBSession类型:
DBSession = sessionmaker(bind=engine)
# 创建新User对象:
new_user = User(id='5', name='Bob')
# 添加到session:
session.add(new_user)
# 提交即保存到数据库:
session.commit()
# 创建Query查询,filter是where条件,最后调用one()返回唯一行,如果调用all()则返回所有行:
user = session.query(User).filter(User.id=='5').one()
# 关闭session:
session.close()
WSGI简单使用和Web框架Flask的简单使用
from wsgiref.simple_server import make_server
def application(environ, start_response):
start_response('200 OK', [('Content-Type', 'text/html')])
return '<h1>Hello, web!</h1>'
# 创建一个服务器,IP地址为空,端口是8000,处理函数是application:
httpd = make_server('', 8000, application)
print "Serving HTTP on port 8000..."
# 开始监听HTTP请求:
httpd.serve_forever()
了解了WSGI框架,我们发现:其实一个Web App,就是写一个WSGI的处理函数,针对每个HTTP请求进行响应。
但是如何处理HTTP请求不是问题,问题是如何处理100个不同的URL。
一个最简单和最土的想法是从environ变量里取出HTTP请求的信息,然后逐个判断。
from flask import Flask
from flask import request
app = Flask(__name__)
@app.route('/', methods=['GET', 'POST'])
def home():
return '<h1>Home</h1>'
@app.route('/signin', methods=['GET'])
def signin_form():
return '''<form action="/signin" method="post">
<p><input name="username"></p>
<p><input name="password" type="password"></p>
<p><button type="submit">Sign In</button></p>
</form>'''
@app.route('/signin', methods=['POST'])
def signin():
# 需要从request对象读取表单内容:
if request.form['username']=='admin' and request.form['password']=='password':
return '<h3>Hello, admin!</h3>'
return '<h3>Bad username or password.</h3>'
if __name__ == '__main__':
app.run()
格式化显示json
print(json.dumps(data, indent=4))
# 或者
import pprint
pprint.pprint(data)
实现类似Java或C中的枚举
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import itertools
import sys
class ImmutableMixin(object):
_inited = False
def __init__(self):
self._inited = True
def __setattr__(self, key, value):
if self._inited:
raise Exception("unsupported action")
super(ImmutableMixin, self).__setattr__(key, value)
class EnumMixin(object):
def __iter__(self):
for k, v in itertools.imap(lambda x: (x, getattr(self, x)), dir(self)):
if not k.startswith('_'):
yield v
class _RunnerType(ImmutableMixin, EnumMixin):
SERIAL = "serial"
CONSTANT = "constant"
CONSTANT_FOR_DURATION = "constant_for_duration"
RPS = "rps"
if __name__=="__main__":
print _RunnerType.CONSTANT
创建文件时指定权限
import os
def write_to_file(path, contents, umask=None):
"""Write the given contents to a file
:param path: Destination file
:param contents: Desired contents of the file
:param umask: Umask to set when creating this file (will be reset)
"""
if umask:
saved_umask = os.umask(umask)
try:
with open(path, 'w') as f:
f.write(contents)
finally:
if umask:
os.umask(saved_umask)
if __name__ == '__main__':
write_to_file('/home/kong/tmp', 'test', 31)
# Then you will see a file is created with permission 640.
# Warning: If the file already exists, its permission will not be changed.
# Note:For file, default all permission is 666, and 777 for directory.
多进程并发执行
import multiprocessing
import time
import os
def run(flag):
print "flag: %s, sleep 2s in run" % flag
time.sleep(2)
print "%s exist" % flag
return flag
if __name__ == '__main__':
pool = multiprocessing.Pool(3)
iter_result = pool.imap(run, xrange(6))
print "sleep 5s\n\n"
time.sleep(5)
for i in range(6):
try:
result = iter_result.next(600)
except multiprocessing.TimeoutError as e:
raise
print result
pool.close()
pool.join()
运行时自动填充函数参数
import decorator
def default_from_global(arg_name, env_name):
def default_from_global(f, *args, **kwargs):
id_arg_index = f.func_code.co_varnames.index(arg_name)
args = list(args)
if args[id_arg_index] is None:
args[id_arg_index] = get_global(env_name)
if not args[id_arg_index]:
print("Missing argument: --%(arg_name)s" % {"arg_name": arg_name})
return(1)
return f(*args, **kwargs)
return decorator.decorator(default_from_global)
# 如下是一个装饰器,可以用在需要自动填充参数的函数上。功能是:
# 如果没有传递函数的deploy_id参数,那么就从环境变量中获取(调用自定义的get_global函数)
with_default_deploy_id = default_from_global('deploy_id', ENV_DEPLOYMENT)
嵌套装饰器
validator函数装饰func1,func1使用时接收参数(*arg, **kwargs),而func1又装饰func2(其实就是Rally中的scenario函数),给func2增加validators属性,是一个函数的列表,函数的接收参数config, clients, task。这些函数最终调用func1,传入参数(config, clients, task, *args, **kwargs),所以func1定义时参数是(config, clients, task, *arg, **kwargs)
最终实现的效果是,func2有很多装饰器,每个都会接收自己的参数,做一些校验工作。
def validator(fn):
"""Decorator that constructs a scenario validator from given function.
Decorated function should return ValidationResult on error.
:param fn: function that performs validation
:returns: rally scenario validator
"""
def wrap_given(*args, **kwargs):
"""Dynamic validation decorator for scenario.
:param args: the arguments of the decorator of the benchmark scenario
ex. @my_decorator("arg1"), then args = ('arg1',)
:param kwargs: the keyword arguments of the decorator of the scenario
ex. @my_decorator(kwarg1="kwarg1"), then kwargs = {"kwarg1": "kwarg1"}
"""
def wrap_validator(config, clients, task):
return (fn(config, clients, task, *args, **kwargs) or
ValidationResult())
def wrap_scenario(scenario):
wrap_validator.permission = getattr(fn, "permission",
consts.EndpointPermission.USER)
if not hasattr(scenario, "validators"):
scenario.validators = []
scenario.validators.append(wrap_validator)
return scenario
return wrap_scenario
return wrap_given
inspect库的一些常见用法
inspect.getargspec(func) 获取函数参数的名称和默认值,返回一个四元组(args, varargs, keywords, defaults),其中:
args是参数名称的列表;
varargs和keywords是*号和**号的变量名称;
defaults是参数默认值的列表;
inspect.getcallargs(func[, *args][, **kwds]) 绑定函数参数。返回绑定后函数的入参字典。
python中的私有属性和函数
Python把以两个或以上下划线字符开头且没有以两个或以上下划线结尾的变量当作私有变量。私有变量会在代码生成之前被转换为长格式(变为公有),这个过程叫"Private name mangling",如类A里的__private标识符将被转换为_A__private,但当类名全部以下划线命名的时候,Python就不再执行轧压。而且,虽然叫私有变量,仍然有可能被访问或修改(使用_classname__membername),所以, 总结如下:
无论是单下划线还是双下划线开头的成员,都是希望外部程序开发者不要直接使用这些成员变量和这些成员函数,只是双下划线从语法上能够更直接的避免错误的使用,但是如果按照_类名__成员名则依然可以访问到。单下划线的在动态调试时可能会方便一些,只要项目组的人都遵守下划线开头的成员不直接使用,那使用单下划线或许会更好。


猜你喜欢
- YAML语法规则:http://www.ibm.com/developerworks/cn/xml/x-cn-yamlintro/下载PyY
- 有两种方法供参考.一种是实实在在的将图片先用ASPJPEG组件做成想要的尺寸,再读取好处是节省服务器带宽,速度快坏处是处理起来较为麻烦,并网
- 如何同时处理数据库和页面错误? If Err.Number = 0 And ob
- 最近在做周报的时候,需要把csv文本中的数据提取出来制作表格后生产图表。在获取csv文本内容的时候,基本上都是用with open(file
- 有时候要用Javascript输常用的字符,比如每个页面都要有的脚注。这里提供一个转换脚本:将HTML自动转为JS代码<script&
- YUI Compressor 压缩 JavaScript 的内容包括:移除注释移除额外的空格细微优化标识符替换(Identifier Rep
- 代码很简单,功能也很简单 =w=webpage2pdf#!/usr/bin/env python3import systry: from P
- 1.简要概述为什么要开通MySQL这个学习板块呢?因为这是一名数据分析师必要的一项技能。分析数据什么最重要?当然是数据,既然如此!在数据呈现
- 一个常常令设计师和前端开发人员都头疼的事情就是字体的使用,设计师常常在设计稿中使用某些很漂亮的字体,以实现比较酷炫的界面。但这样常常给编码人
- 本文将介绍使用mutable对象作为Python函数参数默认值潜在的危害,以及其实现原理和设计目的陷阱重现我们就用实际的举例来演示我们今天所
- 如何在pytorch中使用word2vec训练好的词向量torch.nn.Embedding()这个方法是在pytorch中将词向量和词对应
- 一、Mysql使用limit分页select * from stu limit m, n; //m = (startPage-1)*page
- 刚来公司的时候领导给分配的都是一些简单的简单的简单的。。。。。任务一次叫我把文章的字体大小变换功能写出来。在网上搜了很多都不管用!不过功夫不
- 本文实例讲述了javascript限制用户只能输汉字中文的方法。分享给大家供大家参考。具体实现方法如下:要验证函数时我们必须明白,如果是汉字
- 一、MYSQL的索引索引(Index):帮助Mysql高效获取数据的一种数据结构。用于提高查找效率,可以比作字典。可以简单理解为排好序的快速
- VScode查看python f.write()的文件乱码在使用 VScode 编写 python 代码,print(),汉字正常显示,使用
- 在安装tensorflow完成后,import tensorflow as tf出现问题,问题如下:>>> import
- 今天有个服务器速度变得非常慢,用工具一看,IIS堵塞进程达到100多个,肯定有问题,下面进入排查(聚友习惯把过程写出来,如果不需要过程,请直
- 按照正常的产品逻辑,我们在进行页面切换时滚动条应该是在页面顶部的,可是。。。在使用vue-router进行页面切换时,发现滚动条所处的位置被
- 海量数据(百万以上),其中有些全部字段都相同,有些部分字段相同,怎样高效去除重复?如果要删除手机(mobilePhone),电话(offic