网络编程
位置:首页>> 网络编程>> 网络编程>> 教你用YOLOv5实现多路摄像头实时目标检测功能

教你用YOLOv5实现多路摄像头实时目标检测功能

作者:llh_1178  发布时间:2022-12-27 08:51:14 

标签:yolov5,目标,检测

前言

YOLOV5模型从发布到现在都是炙手可热的目标检测模型,被广泛运用于各大场景之中。因此,我们不光要知道如何进行yolov5模型的训练,而且还要知道怎么进行部署应用。在本篇博客中,我将利用yolov5模型简单的实现从摄像头端到web端的部署应用demo,为读者提供一些部署思路。

一、YOLOV5的强大之处

你与目标检测高手之差一个YOLOV5模型。YOLOV5可以说是现目前几乎将所有目标检测tricks运用于一身的模型了。在它身上能找到很多目前主流的数据增强、模型训练、模型后处理的方法,下面我们就简单总结一下yolov5所使用到的方法:

yolov5增加的功能:

教你用YOLOv5实现多路摄像头实时目标检测功能

yolov5训练和预测的tricks:

教你用YOLOv5实现多路摄像头实时目标检测功能

二、YOLOV5部署多路摄像头的web应用

1.多路摄像头读取

在此篇博客中,采用了yolov5源码的datasets.py代码中的LoadStreams类进行多路摄像头视频流的读取。因为,我们只会用到datasets.py中视频流读取的部分代码,所以,将其提取出来,新建一个camera.py文件,下面则是camera.py文件的代码部分:

# coding:utf-8
import os
import cv2
import glob
import time
import numpy as np
from pathlib import Path
from utils.datasets import letterbox
from threading import Thread
from utils.general import clean_str

img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp']  # acceptable image suffixes
vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv']  # acceptable video suffixes

class LoadImages:  # for inference
   def __init__(self, path, img_size=640, stride=32):
       p = str(Path(path).absolute())  # os-agnostic absolute path
       if '*' in p:
           files = sorted(glob.glob(p, recursive=True))  # glob
       elif os.path.isdir(p):
           files = sorted(glob.glob(os.path.join(p, '*.*')))  # dir
       elif os.path.isfile(p):
           files = [p]  # files
       else:
           raise Exception(f'ERROR: {p} does not exist')

images = [x for x in files if x.split('.')[-1].lower() in img_formats]
       videos = [x for x in files if x.split('.')[-1].lower() in vid_formats]
       ni, nv = len(images), len(videos)

self.img_size = img_size
       self.stride = stride
       self.files = images + videos
       self.nf = ni + nv  # number of files
       self.video_flag = [False] * ni + [True] * nv
       self.mode = 'image'
       if any(videos):
           self.new_video(videos[0])  # new video
       else:
           self.cap = None
       assert self.nf > 0, f'No images or videos found in {p}. ' \
                           f'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}'

def __iter__(self):
       self.count = 0
       return self

def __next__(self):
       if self.count == self.nf:
           raise StopIteration
       path = self.files[self.count]

if self.video_flag[self.count]:
           # Read video
           self.mode = 'video'
           ret_val, img0 = self.cap.read()
           if not ret_val:
               self.count += 1
               self.cap.release()
               if self.count == self.nf:  # last video
                   raise StopIteration
               else:
                   path = self.files[self.count]
                   self.new_video(path)
                   ret_val, img0 = self.cap.read()

self.frame += 1
           print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.nframes}) {path}: ', end='')

else:
           # Read image
           self.count += 1
           img0 = cv2.imread(path)  # BGR
           assert img0 is not None, 'Image Not Found ' + path
           print(f'image {self.count}/{self.nf} {path}: ', end='')

# Padded resize
       img = letterbox(img0, self.img_size, stride=self.stride)[0]

# Convert
       img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
       img = np.ascontiguousarray(img)

return path, img, img0, self.cap

def new_video(self, path):
       self.frame = 0
       self.cap = cv2.VideoCapture(path)
       self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))

def __len__(self):
       return self.nf  # number of files

class LoadWebcam:  # for inference
   def __init__(self, pipe='0', img_size=640, stride=32):
       self.img_size = img_size
       self.stride = stride

if pipe.isnumeric():
           pipe = eval(pipe)  # local camera
       # pipe = 'rtsp://192.168.1.64/1'  # IP camera
       # pipe = 'rtsp://username:password@192.168.1.64/1'  # IP camera with login
       # pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg'  # IP golf camera

self.pipe = pipe
       self.cap = cv2.VideoCapture(pipe)  # video capture object
       self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3)  # set buffer size

def __iter__(self):
       self.count = -1
       return self

def __next__(self):
       self.count += 1
       if cv2.waitKey(1) == ord('q'):  # q to quit
           self.cap.release()
           cv2.destroyAllWindows()
           raise StopIteration

# Read frame
       if self.pipe == 0:  # local camera
           ret_val, img0 = self.cap.read()
           img0 = cv2.flip(img0, 1)  # flip left-right
       else:  # IP camera
           n = 0
           while True:
               n += 1
               self.cap.grab()
               if n % 30 == 0:  # skip frames
                   ret_val, img0 = self.cap.retrieve()
                   if ret_val:
                       break

# Print
       assert ret_val, f'Camera Error {self.pipe}'
       img_path = 'webcam.jpg'
       print(f'webcam {self.count}: ', end='')

# Padded resize
       img = letterbox(img0, self.img_size, stride=self.stride)[0]

# Convert
       img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
       img = np.ascontiguousarray(img)

return img_path, img, img0, None

def __len__(self):
       return 0

class LoadStreams:  # multiple IP or RTSP cameras
   def __init__(self, sources='streams.txt', img_size=640, stride=32):
       self.mode = 'stream'
       self.img_size = img_size
       self.stride = stride

if os.path.isfile(sources):
           with open(sources, 'r') as f:
               sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
       else:
           sources = [sources]

n = len(sources)
       self.imgs = [None] * n
       self.sources = [clean_str(x) for x in sources]  # clean source names for later
       for i, s in enumerate(sources):
           # Start the thread to read frames from the video stream
           print(f'{i + 1}/{n}: {s}... ', end='')
           cap = cv2.VideoCapture(eval(s) if s.isnumeric() else s)
           assert cap.isOpened(), f'Failed to open {s}'
           w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
           h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
           fps = cap.get(cv2.CAP_PROP_FPS) % 100
           _, self.imgs[i] = cap.read()  # guarantee first frame
           thread = Thread(target=self.update, args=([i, cap]), daemon=True)
           print(f' success ({w}x{h} at {fps:.2f} FPS).')
           thread.start()
       print('')  # newline

# check for common shapes
       s = np.stack([letterbox(x, self.img_size, stride=self.stride)[0].shape for x in self.imgs], 0)  # shapes
       self.rect = np.unique(s, axis=0).shape[0] == 1  # rect inference if all shapes equal
       if not self.rect:
           print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')

def update(self, index, cap):
       # Read next stream frame in a daemon thread
       n = 0
       while cap.isOpened():
           n += 1
           # _, self.imgs[index] = cap.read()
           cap.grab()
           if n == 4:  # read every 4th frame
               success, im = cap.retrieve()
               self.imgs[index] = im if success else self.imgs[index] * 0
               n = 0
           time.sleep(0.01)  # wait time

def __iter__(self):
       self.count = -1
       return self

def __next__(self):
       self.count += 1
       img0 = self.imgs.copy()
       if cv2.waitKey(1) == ord('q'):  # q to quit
           cv2.destroyAllWindows()
           raise StopIteration

# Letterbox
       img = [letterbox(x, self.img_size, auto=self.rect, stride=self.stride)[0] for x in img0]

# Stack
       img = np.stack(img, 0)

# Convert
       img = img[:, :, :, ::-1].transpose(0, 3, 1, 2)  # BGR to RGB, to bsx3x416x416
       img = np.ascontiguousarray(img)

return self.sources, img, img0, None

def __len__(self):
       return 0  # 1E12 frames = 32 streams at 30 FPS for 30 years

2.模型封装

接下来,我们借助detect.py文件对yolov5模型进行接口封装,使其提供模型推理能力。新建一个yolov5.py文件,构建一个名为darknet的类,使用函数detect,提供目标检测能力。其代码如下:

# coding:utf-8
import cv2
import json
import time
import torch
import numpy as np
from camera import LoadStreams, LoadImages
from utils.torch_utils import select_device
from models.experimental import attempt_load
from utils.general import non_max_suppression, scale_coords, letterbox, check_imshow

class Darknet(object):
   """docstring for Darknet"""
   def __init__(self, opt):
       self.opt = opt
       self.device = select_device(self.opt["device"])
       self.half = self.device.type != 'cpu'  # half precision only supported on CUDA
       self.model = attempt_load(self.opt["weights"], map_location=self.device)
       self.stride = int(self.model.stride.max())
       self.model.to(self.device).eval()
       self.names = self.model.module.names if hasattr(self.model, 'module') else self.model.names
       if self.half: self.model.half()
       self.source = self.opt["source"]
       self.webcam = self.source.isnumeric() or self.source.endswith('.txt') or self.source.lower().startswith(
       ('rtsp://', 'rtmp://', 'http://'))

def preprocess(self, img):
       img = np.ascontiguousarray(img)
       img = torch.from_numpy(img).to(self.device)
       img = img.half() if self.half else img.float()  # uint8 to fp16/32
       img /= 255.0  # 图像归一化
       if img.ndimension() == 3:
           img = img.unsqueeze(0)
       return img

def detect(self, dataset):
       view_img = check_imshow()
       t0 = time.time()
       for path, img, img0s, vid_cap in dataset:
           img = self.preprocess(img)

t1 = time.time()
           pred = self.model(img, augment=self.opt["augment"])[0]  # 0.22s
           pred = pred.float()
           pred = non_max_suppression(pred, self.opt["conf_thres"], self.opt["iou_thres"])
           t2 = time.time()

pred_boxes = []
           for i, det in enumerate(pred):
               if self.webcam:  # batch_size >= 1
                   p, s, im0, frame = path[i], '%g: ' % i, img0s[i].copy(), dataset.count
               else:
                   p, s, im0, frame = path, '', img0s, getattr(dataset, 'frame', 0)
               s += '%gx%g ' % img.shape[2:]  # print string
               gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
               if det is not None and len(det):
                   det[:, :4] = scale_coords(
                       img.shape[2:], det[:, :4], im0.shape).round()

# Print results
                   for c in det[:, -1].unique():
                       n = (det[:, -1] == c).sum()  # detections per class
                       s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "  # add to string

for *xyxy, conf, cls_id in det:
                       lbl = self.names[int(cls_id)]
                       xyxy = torch.tensor(xyxy).view(1, 4).view(-1).tolist()
                       score = round(conf.tolist(), 3)
                       label = "{}: {}".format(lbl, score)
                       x1, y1, x2, y2 = int(xyxy[0]), int(xyxy[1]), int(xyxy[2]), int(xyxy[3])
                       pred_boxes.append((x1, y1, x2, y2, lbl, score))
                       if view_img:
                           self.plot_one_box(xyxy, im0, color=(255, 0, 0), label=label)

# Print time (inference + NMS)
               # print(pred_boxes)
               print(f'{s}Done. ({t2 - t1:.3f}s)')

if view_img:
                   print(str(p))
                   cv2.imshow(str(p), cv2.resize(im0, (800, 600)))
                   if self.webcam:
                       if cv2.waitKey(1) & 0xFF == ord('q'): break
                   else:
                   cv2.waitKey(0)

print(f'Done. ({time.time() - t0:.3f}s)')
       # print('[INFO] Inference time: {:.2f}s'.format(t3-t2))
       # return pred_boxes

# Plotting functions
   def plot_one_box(self, x, img, color=None, label=None, line_thickness=None):
       # Plots one bounding box on image img
       tl = line_thickness or round(0.001 * max(img.shape[0:2])) + 1  # line thickness
       color = color or [random.randint(0, 255) for _ in range(3)]
       c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
       cv2.rectangle(img, c1, c2, color, thickness=tl)
       if label:
           tf = max(tl - 1, 1)  # font thickness
           t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
           c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
           cv2.rectangle(img, c1, c2, color, -1)  # filled
           cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [0, 0, 0], thickness=tf, lineType=cv2.LINE_AA)

if __name__ == "__main__":
   with open('yolov5_config.json', 'r', encoding='utf8') as fp:
       opt = json.load(fp)
       print('[INFO] YOLOv5 Config:', opt)
   darknet = Darknet(opt)
   if darknet.webcam:
       # cudnn.benchmark = True  # set True to speed up constant image size inference
       dataset = LoadStreams(darknet.source, img_size=opt["imgsz"], stride=darknet.stride)
   else:
       dataset = LoadImages(darknet.source, img_size=opt["imgsz"], stride=darknet.stride)
   darknet.detect(dataset)
   cv2.destroyAllWindows()

此外,还需要提供一个模型配置文件,我们使用json文件进行保存。新建一个yolov5_config.json文件,内容如下:

{
"source": "streams.txt",  # 为视频图像文件地址
"weights": "runs/train/exp/weights/best.pt", # 自己的模型地址
"device": "cpu", # 使用的device类别,如是GPU,可填"0"
"imgsz": 640,  # 输入图像的大小
"stride": 32,  # 步长
"conf_thres": 0.35, # 置信值阈值
"iou_thres": 0.45,  # iou阈值
"augment": false  # 是否使用图像增强
}

视频图像文件可以是单独的一张图像,如:"…/images/demo.jpg",也可以是一个视频文件,如:"…/videos/demo.mp4",也可以是一个视频流地址,如:“rtsp://wowzaec2demo.streamlock.net/vod/mp4:BigBuckBunny_115k.mov”,还可以是一个txt文件,里面包含多个视频流地址,如:

rtsp://wowzaec2demo.streamlock.net/vod/mp4:BigBuckBunny_115k.mov
rtsp://wowzaec2demo.streamlock.net/vod/mp4:BigBuckBunny_115k.mov

- 有了如此配置信息,通过运行yolov5.py代码,我们能实现对视频文件(mp4、avi等)、视频流地址(http、rtsp、rtmp等)、图片(jpg、png)等视频图像文件进行目标检测推理的效果。

3.Flask后端处理

有了对模型封装的代码,我们就可以利用flask框架实时向前端推送算法处理之后的图像了。新建一个web_main.py文件:

# import the necessary packages
from yolov5 import Darknet
from camera import LoadStreams, LoadImages
from utils.general import non_max_suppression, scale_coords, letterbox, check_imshow
from flask import Response
from flask import Flask
from flask import render_template
import time
import torch
import json
import cv2
import os

# initialize a flask object
app = Flask(__name__)

# initialize the video stream and allow the camera sensor to warmup
with open('yolov5_config.json', 'r', encoding='utf8') as fp:
   opt = json.load(fp)
   print('[INFO] YOLOv5 Config:', opt)

darknet = Darknet(opt)
if darknet.webcam:
   # cudnn.benchmark = True  # set True to speed up constant image size inference
   dataset = LoadStreams(darknet.source, img_size=opt["imgsz"], stride=darknet.stride)
else:
   dataset = LoadImages(darknet.source, img_size=opt["imgsz"], stride=darknet.stride)
time.sleep(2.0)

@app.route("/")
def index():
   # return the rendered template
   return render_template("index.html")

def detect_gen(dataset, feed_type):
   view_img = check_imshow()
   t0 = time.time()
   for path, img, img0s, vid_cap in dataset:
       img = darknet.preprocess(img)

t1 = time.time()
       pred = darknet.model(img, augment=darknet.opt["augment"])[0]  # 0.22s
       pred = pred.float()
       pred = non_max_suppression(pred, darknet.opt["conf_thres"], darknet.opt["iou_thres"])
       t2 = time.time()

pred_boxes = []
       for i, det in enumerate(pred):
           if darknet.webcam:  # batch_size >= 1
               feed_type_curr, p, s, im0, frame = "Camera_%s" % str(i), path[i], '%g: ' % i, img0s[i].copy(), dataset.count
           else:
               feed_type_curr, p, s, im0, frame = "Camera", path, '', img0s, getattr(dataset, 'frame', 0)

s += '%gx%g ' % img.shape[2:]  # print string
           gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
           if det is not None and len(det):
               det[:, :4] = scale_coords(
                   img.shape[2:], det[:, :4], im0.shape).round()

# Print results
               for c in det[:, -1].unique():
                   n = (det[:, -1] == c).sum()  # detections per class
                   s += f"{n} {darknet.names[int(c)]}{'s' * (n > 1)}, "  # add to string

for *xyxy, conf, cls_id in det:
                   lbl = darknet.names[int(cls_id)]
                   xyxy = torch.tensor(xyxy).view(1, 4).view(-1).tolist()
                   score = round(conf.tolist(), 3)
                   label = "{}: {}".format(lbl, score)
                   x1, y1, x2, y2 = int(xyxy[0]), int(xyxy[1]), int(xyxy[2]), int(xyxy[3])
                   pred_boxes.append((x1, y1, x2, y2, lbl, score))
                   if view_img:
                       darknet.plot_one_box(xyxy, im0, color=(255, 0, 0), label=label)

# Print time (inference + NMS)
           # print(pred_boxes)
           print(f'{s}Done. ({t2 - t1:.3f}s)')
           if feed_type_curr == feed_type:
               frame = cv2.imencode('.jpg', im0)[1].tobytes()
               yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')

@app.route('/video_feed/<feed_type>')
def video_feed(feed_type):
   """Video streaming route. Put this in the src attribute of an img tag."""
   if feed_type == 'Camera_0':
       return Response(detect_gen(dataset=dataset, feed_type=feed_type),
                       mimetype='multipart/x-mixed-replace; boundary=frame')

elif feed_type == 'Camera_1':
       return Response(detect_gen(dataset=dataset, feed_type=feed_type),
                       mimetype='multipart/x-mixed-replace; boundary=frame')

if __name__ == '__main__':
   app.run(host='0.0.0.0', port="5000", threaded=True)

通过detect_gen函数将多个视频流地址推理后的图像按照feed_type类型,通过video_feed视频流路由进行传送到前端。

4.前端展示

最后,我们写一个简单的前端代码。首先新建一个templates文件夹,再在此文件夹中新建一个index.html文件,将下面h5代码写入其中:

<html>
 <head>
<style>
* {
 box-sizing: border-box;
 text-align: center;
}

.img-container {
 float: left;
 width: 30%;
 padding: 5px;
}

.clearfix::after {
 content: "";
 clear: both;
 display: table;
}
.clearfix{
margin-left: 500px;
}
</style>
 </head>
 <body>
 <h1>Multi-camera with YOLOv5</h1>
 <div class="clearfix">
 <div class="img-container" align="center">
       <p align="center">Live stream 1</p>
       <img src="{{ url_for('video_feed', feed_type='Camera_0') }}" class="center"  style="border:1px solid black;width:100%" alt="Live Stream 1">
 </div>
 <div class="img-container" align="center">
       <p align="center">Live stream 2</p>
       <img src="{{ url_for('video_feed', feed_type='Camera_1') }}" class="center"  style="border:1px solid black;width:100%" alt="Live Stream 2">
 </div>
</div>
 </body>
</html>

至此,我们利用YOLOv5模型实现多路摄像头实时推理代码就写完了,下面我们开始运行:

- 在终端中进行跟目录下,直接运行:

python web_main.py

然后,会在终端中出现如下信息:

[INFO] YOLOv5 Config: {'source': 'streams.txt', 'weights': 'runs/train/exp/weights/best.pt', 'device': 'cpu', 'imgsz': 640, 'stride': 32, 'conf_thres': 0.35, 'iou_thres': 0.45, 'augment': False}
Fusing layers...
1/2: rtsp://wowzaec2demo.streamlock.net/vod/mp4:BigBuckBunny_115k.mov...  success (240x160 at 24.00 FPS).
2/2: rtsp://wowzaec2demo.streamlock.net/vod/mp4:BigBuckBunny_115k.mov...  success (240x160 at 24.00 FPS).

* Serving Flask app "web_main" (lazy loading)
* Environment: production
  WARNING: This is a development server. Do not use it in a production deployment.
  Use a production WSGI server instead.
* Debug mode: off
* Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)

* 接着打开浏览器,输入localhost:5000后,终端没有报任何错误,则就会出现如下页面:

教你用YOLOv5实现多路摄像头实时目标检测功能

来源:https://blog.csdn.net/llh_1178/article/details/115075941

0
投稿

猜你喜欢

手机版 网络编程 asp之家 www.aspxhome.com