Python 实现自动化Excel报表的步骤
作者:致于数据科学家的小陈 发布时间:2022-12-01 10:49:29
标签:python,excel,报表
目录
总体解决方案
输出报表
自动化Py脚本
打包 EXE 桌面小程序
好几个月没有写笔记了, 并非没有积累, 而是有点懒了. 想想还是要续上, 作为工作成长的一部分哦.
最近有做一些报表, 但一直找不到一个合适的报表工具, 又实在不想写前端, 后端... 思来想去, 感觉 Excel 就一定程度上能做可视化的, 除了不能动态交互外, 其他都挺好. 今天分享的就是一个关于如何用 Py 来自动化Excel 报表, 解放双手, 提高工作效率哦.
总体解决方案
输出报表
当然是测试用的假数据啦.
自动化Py脚本
基本思路:
1. 准备模板数据需要的 SQL
2. 用 Pandas 连接 数据库 并执行 SQL, 返回 DataFrame
3. 用 Xlwings 直接打开 Excel, 并将这些 DataFrame 填充到 写死的 单元格
4. 保存并退出
具体代码如下哦:
import pandas as pd
import xlwings as xw
import pymssql
# 各品类月同期
def get_last_year_sale(start_date, end_date):
"""各品类同期销量, 对比19年"""
sql_01 = f"""
SELECT
品类
, SUM(数量) AS QTY
FROM XXX
WHERE 是否电商 = 1
AND 销售时间 BETWEEN DATEADD(YEAR, -2, '{start_date}') AND DATEADD(YEAR, -2, '{end_date}')
GROUP BY 品类
"""
df = pd.read_sql(sql_01, con=con)
df_xtc = df[df['品类'] == 'A品类'][['品类', 'QTY']]
df_bbk = df[df['品类'] == 'B品类'][['品类', 'QTY']]
return df_xtc, df_bbk
def get_anget_sale(start_date, end_date):
"""返回各品类, 各区域的时间段销量"""
sql = f"""
SELECT
品类
, AGENT
, SUM(数量) AS QTY
, ROW_NUMBER()OVER(PARTITION BY 品类 ORDER BY SUM(数量) DESC) MY_RANK
FROM XXX
WHERE 是否电商 = 1
AND 销售时间 BETWEEN '{start_date}' AND '{end_date}'
GROUP BY AGENT, 品类
"""
df = pd.read_sql(sql, con=con)
df_xtc = df[df['品类'] == 'A品类'][['AGENT', 'QTY']]
df_bbk = df[df['品类'] == 'B品类'][['AGENT', 'QTY']]
df_pad = df[df['品类'] == 'C品类'][['AGENT', 'QTY']]
return df_xtc, df_bbk, df_pad
def get_machine_sale(start_date, end_date):
"""返回各品类, 各区域的时间段销量"""
sql = f"""
SELECT
品类
, 机型
, SUM(数量) AS QTY
, ROW_NUMBER()OVER(PARTITION BY 品类 ORDER BY SUM(数量) DESC) MY_RANK
FROM V_REALSALE
WHERE 是否电商 = 1
AND 销售时间 BETWEEN '{start_date}' AND '{end_date}'
GROUP BY 机型, 品类
"""
df = pd.read_sql(sql, con=con)
df_xtc = df[df['品类'] == 'A品类'][['机型', 'QTY']]
df_bbk = df[df['品类'] == 'B品类'][['机型', 'QTY']]
return df_xtc, df_bbk
# main
con = pymssql.connect('xxxxx', 'sxxx', 'xxxxxx', 'xxxxx')
# 基础配置: 根据用户输入当前日期, 输出当月, 当季度第一天
print("欢迎哦, 此小程序专门为XX看板做数据自动更新呢~")
print()
today = input("请输入截止日期(昨天), 形如: 2021/5/20 按回车结束: ")
if len(today.split('/')) != 3:
raise "日期格式输入错误!!, 请按照形如 '2021/5/20'的格式重新输入"
else:
m_cur = today.split('/')[1]
m_first_day = '2021/' + m_cur + '/1'
# 季度第一天
if m_cur in ('1', '01', '2', '02', '3', '03'):
q_time_start = '2021/1/1'
elif m_cur in ('4', '04', '5', '05', '6', '06'):
q_time_start = '2021/4/1'
elif m_cur in ('7', '07', '8', '08', '9', '09'):
q_time_start = '2021/7/1'
else:
q_time_start = '2021/10/1'
print()
print("正在开始更新....")
print("提示, 接下看到闪退, 是正常现象, 就程序模拟人去打开文件, 填充数据, 不要紧张哦~~~")
# 去年月, 季度同期
df_mm_xtc, df_mm_bbk = get_last_year_sale(m_first_day, today)
df_qq_xtc, df_qq_bbk = get_last_year_sale(q_time_start, today)
# 当月各地区累积销量
df_m_xtc, df_m_bbk, df_m_pad = get_anget_sale(m_first_day, today)
# 各地区当季度销量
df_q_xtc, df_q_bbk, df_q_pad = get_anget_sale(q_time_start, today)
# 各机型当季度销量
df_q_type_xtc, df_q_type_bbk = get_machine_sale(q_time_start, today)
# 过滤掉 销量为0的型号
df_q_type_xtc = df_q_type_xtc[df_q_type_xtc.QTY > 0]
df_q_type_xtc.replace('Z6áÛ·å°æ', 'Z6巅峰版', inplace=True)
df_q_type_bbk = df_q_type_bbk[df_q_type_bbk.QTY > 0]
# 打开excel 模板 等待数据填充
app = xw.App(visible=True, add_book=False)
app.display_alerts = False # 关闭一些提示信息,可以加快运行速度。 默认为 True。
app.screen_updating = True
wb = app.books.open("XXX_全品类_看板.xlsx")
data_sht = wb.sheets['数据']
# 19年当月同期销量
data_sht.range('B9').value = df_mm_xtc.values
data_sht.range('G9').value = df_mm_bbk.values
# 当季度同比
data_sht.range('B10').value = df_qq_xtc.values
data_sht.range('G10').value = df_qq_bbk.values
# 填充各品类当月销量, 注意单元格是写死的哦
data_sht.range('I72').value = df_m_xtc.values
data_sht.range('T72').value = df_m_bbk.values
data_sht.range('AE72').value = df_m_pad.values
# 填充当季度销量, 同理是写死的
data_sht.range('A54').value = df_q_xtc.values
data_sht.range('F54').value = df_q_bbk.values
data_sht.range('K54').value = df_q_pad.values
# 填充当季度各型号, 同理是写死的
data_sht.range('A21').value = df_q_type_xtc.values
data_sht.range('F21').value = df_q_type_bbk.values
wb.save()
app.quit()
print()
print("~~更新结束了哦~~")
print()
input("请按任意键退出~~")
print()
print('BYE~~ 人生若只如初见呢~~')
打包 EXE 桌面小程序
最好用一个纯净的 虚拟环境打包.
终端命令: python -m venv
虚拟环境名称
然后进入脚本目录下, 进行打包哦.
pyinstaller main.py -F
打包成功后的样子.
双击运行即可哦.
这时候再重新打开该目录下的 Excel 模板, 发现数据已经自动更新了.
我现在真的感受到, 用开发的思维做一些脚本工具, 真的会极大提高我现在当文员的很多重复性工作哦!
来源:https://www.cnblogs.com/chenjieyouge/p/14604277.html


猜你喜欢
- 本文实例讲述了Python实现螺旋矩阵的填充算法。分享给大家供大家参考,具体如下:afanty的分析:关于矩阵(二维数组)填充问题自己动手推
- 关于Mysql的触发器,基本上每个Mysql教程里都有讲到,但是我发现那些教程里讲的都是如何处理其他表的数据。在Mysql中写触发器操作本表
- 代码如下所示:$num = 10.4567; //第一种:利用round()对浮点数进行四舍五入 &n
- 编写一个程序,能在当前目录以及当前目录的所有子目录下查找文件名包含指定字符串的文件,并打印出绝对路径。import osclass Sear
- Vue2.x用法全局注册Vue.directive( 指令名, { 自定义指令生命周期 } )局部注册directives: { 指令名,
- 问题描述:两个 go 程轮流打印一个切片。Golang 实现:使用两个 channel,只用来判断package mainimport (
- 纵观各大编程语言在 2017 年的发展情况,我们会发现涌现出诸如 Go、Swift 这类后起之秀,而其中最为耀眼的当属 Python。之所以
- Request.ServerVariables("Url") 返回服务器地址Request.ServerVariable
- 目录0. 前言1. 测试环境及关键代码解释1.1 简单测试环境1.2 关键代码2. 完整代码3. 运行效果4. 报错效果4.1 远程连接不上
- 本文实例为大家分享了javascript实现tab切换特效代码,供大家参考,具体内容如下效果图:实现代码:<!DOCTYPE html
- 内容摘要:现在InterNet 越来越成为生活中不可或缺的一部分,制作网页的动态语言也越来越多,主要流行的有以下几种,ASP,PH
- 在流量统计服务中都有Traffic source这个功能。Traffic source是针对访次级别的概念,换句话说,当访次建立的时候,la
- 本文实例讲述了python实现的读取网页并分词功能。分享给大家供大家参考,具体如下:这里使用分词使用最流行的分词包jieba,参考:http
- Anaconda is a completely free Python distribution (including for comme
- 最近在看吴恩达的机器学习课程,自己用python实现了其中的logistic算法,并用梯度下降获取最优值。logistic分类是一个二分类问
- 如下所示:import cv2import mathimport numpy as npdef move(img): height, wid
- 本文实例讲述了Python HTML解析器BeautifulSoup用法。分享给大家供大家参考,具体如下:BeautifulSoup简介我们
- 一.docx模块Python可以利用python-docx模块处理word文档,处理方式是面向对象的。也就是说python-docx模块会把
- JPGjpg全名是JPEG 。JPEG 图片以 24 位颜色存储单个光栅图像。JPEG 是与平台无关的格式,支持最高级别的压缩,不过,这种压
- 本文实例讲述了Python面向对象程序设计中类的定义、实例化、封装及私有变量/方法。分享给大家供大家参考,具体如下:1. 定义类python