Python环境使用OpenCV检测人脸实现教程
作者:Rodrag 发布时间:2022-01-24 11:31:21
标签:Python,OpenCV,检测,人脸
一、文章概述
本文将要讲述的是Python环境下如何用OpenCV检测人脸,本文的主要内容分为:
1、检测图片中的人脸
2、实时检测视频中出现的人脸
3、用运设备的摄像头实时检测人脸
二:准备工作
提前做的准备:
安装好Python3
下载安装OpenCV库,方法是
pip install opencv-python -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com/pypi/simple
下载特征数据HAAR和LBP,这两种数据都能实现对人脸特征的提取,HAAR大多是小数计算所以运算速度较慢,LBP大多是整数计算运行速度较快。如图所示,本次实例用红框中的文本,其他的文本,比如第一个haarcascade_eye.xml是眼睛识别的文本,我们下次再用。
(1)代码和说明
import cv2 as cv
import numpy as np
def face_detect_demo():#人脸检测函数
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)#把图片变成灰度图片,因为人脸的特征需要在灰度图像中查找
#以下分别是HAAR和LBP特征数据,任意选择一种即可,注意:路径中的‘/'和‘\'是有要求的
# 通过级联检测器 cv.CascadeClassifier,加载特征数据
# face_detector = cv.CascadeClassifier("D:/pyproject/cv_renlianjiance/haarcascades/haarcascade_frontalface_alt_tree.xml")
face_detector = cv.CascadeClassifier(
"D:/pyproject/cv_renlianjiance/lbpcascades/lbpcascade_frontalcatface.xml")
#在尺度空间对图片进行人脸检测,第一个参数是哪个图片,第二个参数是向上或向下的尺度变化,是原来尺度的1.02倍,第三个参数是在相邻的几个人脸检测矩形框内出现就认定成人脸,这里是在相邻的5个人脸检测框内出现,如果图片比较模糊的话建议降低一点
faces = face_detector.detectMultiScale(gray, 1.02, 5)
for x, y, w, h in faces:#绘制结果图
#rectangle参数说明,要绘制的目标图像,矩形的第一个顶点,矩形对角线上的另一个顶点,线条的颜色,线条的宽度
cv.rectangle(src, (x, y), (x+w, y+h), (0, 0, 255), 2)
cv.imshow("result", src)#输出结果图
src = cv.imread("D:/pyproject/cv_renlianjiance/cvrenxiangpic/1.jpg")#图片是JPG和png都可以
cv.namedWindow("input image", cv.WINDOW_AUTOSIZE)#创建绘图窗口
cv.namedWindow("result", cv.WINDOW_AUTOSIZE)
cv.imshow("input image", src)
face_detect_demo()
cv.waitKey(0)
cv.destroyAllWindows()#作用是能正常关闭绘图窗口
(2)结果展示
2、视频中的人脸检测
(1)代码和说明
import cv2 as cv
import numpy as np
def face_detect_demo(image):
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
# face_detector = cv.CascadeClassifier("D:/pyproject/cv_renlianjiance/haarcascades/haarcascade_frontalface_alt_tree.xml")
face_detector = cv.CascadeClassifier("D:/pyproject/cv_renlianjiance/lbpcascades/lbpcascade_frontalcatface.xml")
faces = face_detector.detectMultiScale(gray, 1.02, 5)
for x, y, w, h in faces:
cv.rectangle(image, (x, y), (x+w, y+h), (0, 0, 255), 2)
cv.imshow("result", image)
capture = cv.VideoCapture("D:/pyproject/cv_renlianjiance/video/1.mp4")
cv.namedWindow("result", cv.WINDOW_AUTOSIZE)
while (True):
#按帧读取视频,ret,frame是获cap.read()方法的两个返回值。其中ret是布尔值,如果读取帧是正确的则返回True,如果文件读取到结尾,它的返回值就为False。frame就是每一帧的图像,是个三维矩阵。
ret, frame = capture.read()
# cv.flip函数表示图像翻转,沿y轴翻转, 0: 沿x轴翻转, <0: x、y轴同时翻转
frame = cv.flip(frame, 1)
face_detect_demo(frame)
#waitKey()方法本身表示等待键盘输入,参数是1,表示延时1ms切换到下一帧图像,对于视频而言;
c = cv.waitKey(10)
if c == 27:#当键盘按下‘ESC'退出程序
break
#cv.waitKey(0)参数为0,如cv2.waitKey(0)只显示当前帧图像,相当于视频暂停,;
cv.waitKey(0)
cv.destroyAllWindows()#作用是能正常关闭绘图窗口
(2)结果展示
3、利用设备上的摄像头进行人脸检测,其实和2中的代码一样,只是打开摄像头,而不是读取视频文件
代码和说明
import cv2 as cv
import numpy as np
def face_detect_demo(image):
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
# face_detector = cv.CascadeClassifier("D:/pyproject/cv_renlianjiance/haarcascades/haarcascade_frontalface_alt_tree.xml")
face_detector = cv.CascadeClassifier("D:/pyproject/cv_renlianjiance/lbpcascades/lbpcascade_frontalcatface.xml")
faces = face_detector.detectMultiScale(gray, 1.02, 5)
for x, y, w, h in faces:
cv.rectangle(image, (x, y), (x+w, y+h), (0, 0, 255), 2)
cv.imshow("result", image)
capture = cv.VideoCapture(0)#其中的0表示电脑中的第一个相机
cv.namedWindow("result", cv.WINDOW_AUTOSIZE)
while (True):
#按帧读取视频,ret,frame是获cap.read()方法的两个返回值。其中ret是布尔值,如果读取帧是正确的则返回True,如果文件读取到结尾,它的返回值就为False。frame就是每一帧的图像,是个三维矩阵。
ret, frame = capture.read()
# cv.flip函数表示图像翻转,沿y轴翻转, 0: 沿x轴翻转, <0: x、y轴同时翻转
frame = cv.flip(frame, 1)
face_detect_demo(frame)
#waitKey()方法本身表示等待键盘输入,参数是1,表示延时1ms切换到下一帧图像,对于视频而言;
c = cv.waitKey(10)
if c == 27:#当键盘按下‘ESC'退出程序
break
#cv.waitKey(0)参数为0,如cv2.waitKey(0)只显示当前帧图像,相当于视频暂停,;
cv.waitKey(0)
cv.destroyAllWindows()#作用是能正常关闭绘图窗口
来源:https://blog.csdn.net/m0_45161766/article/details/107545960


猜你喜欢
- 一、测试平台:解决分散用例执行方式,提供统一测试用例执行过程、用例管理、测试报告主要是基于: fastapi+vu
- CSS是众所周知且应用广泛的网站样式语言,在它的版本三(CSS3)计划中,新增了一些能够节省时间的特性。尽管只有当前最新了浏览器
- 之前看到Amily的一篇文章,用Excel快速实现分列转到行的操做。数据源大致是这样的:基于此,我动起了一个念头:看看如何用Python快速
- 了解blockchain的概念很简单(区块链,交易链块):它是分布式的(即不是放置在同一台机器上,不同的网络设备上的)数据库支持主办记录日益
- 1、通过探测Flash Player的版本,来决定显示Flash内容还是替换内容,避免了过时的Flash插件影响Flash内容的正常显示。2
- 本文实例为大家分享了关于Player播放器组件的具体内容,供大家参考,具体内容如下迷你播放器:1.播放器组件会在各个页面的情况下会打开。 首
- 1.使用npm进行初始化在本地创建项目的文件夹名称,如 node_test,并在该文件夹下进行黑窗口执行初始化命令 2. 安装 e
- Pattern.split方法详解/** * 测试Pattern.split方法 */ @Test public void testPatt
- 导读我们在使用selenium打开google浏览器的时候,默认打开的是一个新的浏览器窗口,而且里面不带有任何的浏览器缓存信息。当我们想要爬
- 1: os.listdir(path) //path为目录 功能相当于在path目录下执行dir命令,返回为list类型 print os.
- Fraction函数是python中实现分数的一个模块(module),模块是由别人写的,并且可以被拿来直接使用的代码程序,包括类、函数以及
- 假如页面上有很多条记录,很多情况下,对这些信息按照字母表降序排序会比传统的升序排序显示效率更高。采用你熟悉的ORDER BY 子句,你可以很
- 在平时的工作中,我们经常会遇到需要批量创建文件的情况,例如,汇总一个月中每天回复问题的文件等,这里,我们以如何使用当前日期时间创建文件为例:
- 用来制作甘特图的专业工具也不少,常见的有:Microsoft Office Project、GanttProject、WARCHART XG
- 1.单继承父类也叫基类子类也叫派生类如下所示,继承的关系:继承的书写格式:class 子类(父类):方法实例:class Animal: &
- 近几日遇到采集某网页的时候大部分网页OK,少部分网页出现乱码的问题,调试了几日,终于发现了是含有一些非法字符造成的..特此记录1. 在正常情
- 本文实例分析了Python字符串格式化输出方法。分享给大家供大家参考,具体如下:我们格式化构建字符串可以有3种方法:1 元组占位符m = &
- ChineseCalendar 是一个 Python 包,用于获取中国传统日历信息。这个包提供了中国农历、二十四节气、传统节日、黄历等信息。
- 如下所示:# -*- coding: utf-8 -*-import osimport numpy as npimport pandas a
- OpenCV+python3将视频分解成图片,供大家参考,具体内容如下我们在工作或学习时,偶尔需要将视频分解成图片,只取其中一段的图片就行了