解决tensorflow模型参数保存和加载的问题
作者:fresh七天 发布时间:2022-07-19 17:44:00
终于找到bug原因!记一下;还是不熟悉平台的原因造成的!
Q:为什么会出现两个模型对象在同一个文件中一起运行,当直接读取他们分开运行时训练出来的模型会出错,而且总是有一个正确,一个读取错误? 而 直接在同一个文件又训练又重新加载模型预测不出错,而且更诡异的是此时用分文件里的对象加载模型不会出错?
model.py,里面含有 ModelV 和 ModelP,另外还有 modelP.py 和 modelV.py 分别只含有 ModelP 和 ModeV 这两个对象,先使用 modelP.py 和 modelV.py 分别训练好模型,然后再在 model.py 里加载进来:
# -*- coding: utf8 -*-
import tensorflow as tf
class ModelV():
def __init__(self):
self.v1 = tf.Variable(66, name="v1")
self.v2 = tf.Variable(77, name="v2")
self.save_path = "model_v/model.ckpt"
self.init = tf.global_variables_initializer()
self.saver = tf.train.Saver()
self.sess = tf.Session()
def train(self):
self.sess.run(self.init)
print 'v2', self.v2.eval(self.sess)
self.saver.save(self.sess, self.save_path)
print "ModelV saved."
def predict(self):
all_vars = tf.trainable_variables()
for v in all_vars:
print(v.name)
self.saver.restore(self.sess, self.save_path)
print "ModelV restored."
print 'v2', self.v2.eval(self.sess)
print '------------------------------------------------------------------'
class ModelP():
def __init__(self):
self.p1 = tf.Variable(88, name="p1")
self.p2 = tf.Variable(99, name="p2")
self.save_path = "model_p/model.ckpt"
self.init = tf.global_variables_initializer()
self.saver = tf.train.Saver()
self.sess = tf.Session()
def train(self):
self.sess.run(self.init)
print 'p2', self.p2.eval(self.sess)
self.saver.save(self.sess, self.save_path)
print "ModelP saved."
def predict(self):
all_vars = tf.trainable_variables()
for v in all_vars:
print v.name
self.saver.restore(self.sess, self.save_path)
print "ModelP restored."
print 'p2', self.p2.eval(self.sess)
print '---------------------------------------------------------------------'
if __name__ == '__main__':
v = ModelV()
p = ModelP()
v.predict()
#v.train()
p.predict()
#p.train()
这里 tf.global_variables_initializer() 很关键! 尽管你是分别在对象 ModelP 和 ModelV 内部分配和定义的 tf.Variable(),即 v1 v2 和 p1 p2,但是 对 tf 这个模块而言, 这些都是全局变量,可以通过以下代码查看所有的变量,你就会发现同一个文件中同时运行 ModelP 和 ModelV 在初始化之后都打印出了一样的变量,这个是问题的关键所在:
all_vars = tf.trainable_variables()
for v in all_vars:
print(v.name)
错误。你可以交换 modelP 和 modelV 初始化的顺序,看看错误信息的变化
v1:0
v2:0
p1:0
p2:0
ModelV restored.
v2 77
v1:0
v2:0
p1:0
p2:0
W tensorflow/core/framework/op_kernel.cc:975] Not found: Key v2 not found in checkpoint
W tensorflow/core/framework/op_kernel.cc:975] Not found: Key v1 not found in checkpoint
实际上,分开运行时,模型保存的参数是正确的,因为在一个模型里的Variable就只有 v1 v2 或者 p1 p2; 但是在一个文件同时运行的时候,模型参数实际上保存的是 v1 v2 p1 p2四个,因为在默认情况下,创建的Saver,会直接保存所有的参数。而 Saver.restore() 又是默认(无Variable参数列表时)按照已经定义好的全局模型变量来加载对应的参数值, 在进行 ModelV.predict时,按照顺序(从debug可以看出,应该是按照参数顺序一次检测)在模型文件中查找相应的 key,此时能够找到对应的v1 v2,加载成功,但是在 ModelP.predict时,在model_p的模型文件中找不到 v1 和 v2,只有 p1 和 p2, 此时就会报错;不过这里的 第一次加载 还有 p1 p2 找不到没有报错,解释不通, 未完待续
Saver.save() 和 Saver.restore() 是一对, 分别只保存和加载模型的参数, 但是模型的结构怎么知道呢? 必须是你定义好了,而且要和保存的模型匹配才能加载;
如果想要在不定义模型的情况下直接加载出模型结构和模型参数值,使用
# 加载 结构,即 模型参数 变量等
new_saver = tf.train.import_meta_graph("model_v/model.ckpt.meta")
print "ModelV construct"
all_vars = tf.trainable_variables()
for v in all_vars:
print v.name
#print v.name,v.eval(self.sess) # v 都还未初始化,不能求值
# 加载模型 参数变量 的 值
new_saver.restore(self.sess, tf.train.latest_checkpoint('model_v/'))
print "ModelV restored."
all_vars = tf.trainable_variables()
for v in all_vars:
print v.name,v.eval(self.sess)
加载 结构,即 模型参数 变量等完成后,就会有变量了,但是不能访问他的值,因为还未赋值,然后再restore一次即可得到值了
那么上述错误的解决方法就是这个改进版本的model.py;其实 tf.train.Saver 是可以带参数的,他可以保存你想要保存的模型参数,如果不带参数,很可能就会保存 tf.trainable_variables() 所有的variable,而 tf.trainable_variables()又是从 tf 全局得到的,因此只要在模型保存和加载时,构造对应的带参数的tf.train.Saver即可,这样就会保存和加载正确的模型了
# -*- coding: utf8 -*-
import tensorflow as tf
class ModelV():
def __init__(self):
self.v1 = tf.Variable(66, name="v1")
self.v2 = tf.Variable(77, name="v2")
self.save_path = "model_v/model.ckpt"
self.init = tf.global_variables_initializer()
self.sess = tf.Session()
def train(self):
saver = tf.train.Saver([self.v1, self.v2])
self.sess.run(self.init)
print 'v2', self.v2.eval(self.sess)
saver.save(self.sess, self.save_path)
print "ModelV saved."
def predict(self):
saver = tf.train.Saver([self.v1, self.v2])
all_vars = tf.trainable_variables()
for v in all_vars:
print v.name
v_vars = [v for v in all_vars if v.name == 'v1:0' or v.name == 'v2:0']
print "ModelV restored."
saver.restore(self.sess, self.save_path)
for v in v_vars:
print v.name,v.eval(self.sess)
print 'v2', self.v2.eval(self.sess)
print '------------------------------------------------------------------'
class ModelP():
def __init__(self):
self.p1 = tf.Variable(88, name="p1")
self.p2 = tf.Variable(99, name="p2")
self.save_path = "model_p/model.ckpt"
self.init = tf.global_variables_initializer()
self.sess = tf.Session()
def train(self):
saver = tf.train.Saver([self.p1, self.p2])
self.sess.run(self.init)
print 'p2', self.p2.eval(self.sess)
saver.save(self.sess, self.save_path)
print "ModelP saved."
def predict(self):
saver = tf.train.Saver([self.p1, self.p2])
all_vars = tf.trainable_variables()
p_vars = [v for v in all_vars if v.name == 'p1:0' or v.name == 'p2:0']
for v in all_vars:
print v.name
#print v.name,v.eval(self.sess)
saver.restore(self.sess, self.save_path)
print "ModelP restored."
for p in p_vars:
print p.name,p.eval(self.sess)
print 'p2', self.p2.eval(self.sess)
print '----------------------------------------------------------'
if __name__ == '__main__':
v = ModelV()
p = ModelP()
v.predict()
#v.train()
p.predict()
#p.train()
小结: 构造的Saver 最好带Variable参数,这样保证 保存和加载能够正确执行
来源:https://blog.csdn.net/u014659656/article/details/53954793


猜你喜欢
- 引言 近期公司vue前端项目需求:实现弹窗的拖拽,四边拉伸及对角线拉伸,以及弹窗边界处理
- 概述从前面的对Python基础知识方法介绍中,我们几乎是围绕Python内置方法进行探索实践,比如字符串、列表、字典等数据结构的内置方法,和
- 如何使用migrations的使用非常简单: 修改model, 比如增加field, 然后运行python manager.py makem
- JS继承 JavaScript中没有类的概念,与类相关的继承的概念更是无从谈起,但是我们可以通过特殊的语法来 模拟面向对象语言中的继承。 在
- 一、功能分析简单分析一下网站的功能,大致如下:需要用户在地址栏中提交参数,根据参数中的id查询对应的用户信息。如果id存在,则显示查询成功,
- CSS命名规范一.文件命名规范全局样式:global.css;框架布局:layout.css;字体样式:font.css;链接样式:link
- Graphical User Interface,简称 GUI,又称图形化用户接口,所谓的GUI编程,指的是用户不需要输入代码指令,只通过图
- 容器与可迭代对象在正式开始前先补充一些基本概念在 Python 中存在容器 与 可迭代对象容器:用来存储多个元素的数据结构,例如 列表,元组
- 系统默认是torch.FloatTensor类型data = torch.Tensor(2,3)是一个2*3的张量,类型为FloatTens
- 前提环境准备python3+pillow+pyautogui先提前安装好python3以及pillow和pyautogui模块这里介绍一下模
- 一、名称空间和作用域1、命名空间(Namespace)命名空间是从名称到对象的映射,大部分的命名空间都是通过 Python 字典来实现的。命
- 写在前面SciPy的optimize模块提供了许多数值优化算法,下面对其中的一些记录。非线性方程组求解SciPy中对非线性方程组求解是fsl
- 一、什么是数据库连接池就是一个容器持有多个数据库连接,当程序需要操作数据库的时候直接从池中取出连接,使用完之后再还回去,和线程池一个道理。二
- 暴力的重启服务方案一般服务器重启可以直接通过 kill 命令杀死进程,然后重新启动一个新的进程即可。但这种方法比较粗暴,有可能导致某些正在处
- 本文实例为大家分享了vue实现购物车功能的具体代码,供大家参考,具体内容如下new Vue({ el: "#app",
- Any docsAny 是一种特殊的类型。静态类型检查器将所有类型视为与 Any 兼容,反之亦然, Any 也与所有类型相兼容。这意味着可对
- 本文出自“Python为什么”系列,归档在 Github 上:https://github.com/chinesehuazhou/pytho
- 简介几年前,我用C#写了一个RSS阅读器,但是我想如果把它做成一个SPA(单页应用)效果会更好。 Angular使一些事情变得简单,RSS阅
- 一、http协议无状态问题http协议没有提供多次请求之间的关联功能,协议的本意也并未考虑到多次请求之间的状态维持,每一次请求都被协议认为是
- 如何自动反馈电子邮件?很多网站上的电子邮件都是自动回复的,就象163电子邮局提供的邮件自动回复功能一样。这是怎么实现的?我们可以用ASPMa