网络编程
位置:首页>> 网络编程>> Python编程>> Python读csv文件去掉一列后再写入新的文件实例

Python读csv文件去掉一列后再写入新的文件实例

作者:卡路西法  发布时间:2022-05-13 14:04:12 

标签:Python,csv,写入,文件

用了两种方式解决该问题,都是网上现有的解决方案。

场景说明:

有一个数据文件,以文本方式保存,现在有三列user_id,plan_id,mobile_id。目标是得到新文件只有mobile_id,plan_id。

解决方案

方案一:用python的打开文件写文件的方式直接撸一遍数据,for循环内处理数据并写入到新文件。

代码如下:


def readwrite1( input_file,output_file):
f = open(input_file, 'r')
out = open(output_file,'w')
print (f)
for line in f.readlines():
a = line.split(",")
x=a[0] + "," + a[1]+"\n"
out.writelines(x)
f.close()
out.close()

方案二:用 pandas 读数据到 DataFrame 再做数据分割,直接用 DataFrame 的写入功能写到新文件

代码如下:


def readwrite2(input_file,output_file): date_1=pd.read_csv(input_file,header=0,sep=',') date_1[['mobile', 'plan_id']].to_csv(output_file, sep=',', header=True,index=False)

从代码上看,pandas逻辑更清晰。

下面看下执行的效率吧!


def getRunTimes( fun ,input_file,output_file):
begin_time=int(round(time.time() * 1000))
fun(input_file,output_file)
end_time=int(round(time.time() * 1000))
print("读写运行时间:",(end_time-begin_time),"ms")

getRunTimes(readwrite1,input_file,output_file) #直接撸数据
getRunTimes(readwrite2,input_file,output_file1) #使用dataframe读写数据

读写运行时间: 976 ms

读写运行时间: 777 ms

input_file 大概有27万的数据,dataframe的效率比for循环效率还是要快一点的,如果数据量更大些,效果是否更明显呢?

下面试下增加input_file记录的数量试试,有如下结果

input_filereadwrite1readwrite2
27W976777
55W19891509
110W43123158

从上面测试结果来看,dataframe的效率提高大约30%左右。

来源:https://www.cnblogs.com/kaluxifa/archive/2017/12/28/8134960.html

0
投稿

猜你喜欢

手机版 网络编程 asp之家 www.aspxhome.com